binhnase04854's picture
first deploy
b699122
raw
history blame
6.83 kB
"""Qdrant vector store index.
An index that is built on top of an existing Qdrant collection.
"""
import logging
from typing import Any, Dict, List, Optional, cast
from gpt_index.data_structs.node_v2 import DocumentRelationship, Node
from gpt_index.utils import iter_batch
from gpt_index.vector_stores.types import (
NodeEmbeddingResult,
VectorStore,
VectorStoreQueryResult,
VectorStoreQuery,
)
logger = logging.getLogger(__name__)
class QdrantVectorStore(VectorStore):
"""Qdrant Vector Store.
In this vector store, embeddings and docs are stored within a
Qdrant collection.
During query time, the index uses Qdrant to query for the top
k most similar nodes.
Args:
collection_name: (str): name of the Qdrant collection
client (Optional[Any]): QdrantClient instance from `qdrant-client` package
"""
stores_text: bool = True
def __init__(
self, collection_name: str, client: Optional[Any] = None, **kwargs: Any
) -> None:
"""Init params."""
import_err_msg = (
"`qdrant-client` package not found, please run `pip install qdrant-client`"
)
try:
import qdrant_client # noqa: F401
except ImportError:
raise ImportError(import_err_msg)
if client is None:
raise ValueError("Missing Qdrant client!")
self._client = cast(qdrant_client.QdrantClient, client)
self._collection_name = collection_name
self._collection_initialized = self._collection_exists(collection_name)
self._batch_size = kwargs.get("batch_size", 100)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> "VectorStore":
if "client" not in config_dict:
raise ValueError("Missing Qdrant client!")
return cls(**config_dict)
@property
def config_dict(self) -> dict:
"""Return config dict."""
return {
"collection_name": self._collection_name,
}
def add(self, embedding_results: List[NodeEmbeddingResult]) -> List[str]:
"""Add embedding results to index.
Args
embedding_results: List[NodeEmbeddingResult]: list of embedding results
"""
from qdrant_client.http import models as rest
if len(embedding_results) > 0 and not self._collection_initialized:
self._create_collection(
collection_name=self._collection_name,
vector_size=len(embedding_results[0].embedding),
)
ids = []
for result_batch in iter_batch(embedding_results, self._batch_size):
new_ids = []
vectors = []
payloads = []
for result in result_batch:
new_ids.append(result.id)
vectors.append(result.embedding)
node = result.node
payloads.append(
{
"doc_id": result.doc_id,
"text": node.get_text(),
"extra_info": node.extra_info,
}
)
self._client.upsert(
collection_name=self._collection_name,
points=rest.Batch(
ids=new_ids,
vectors=vectors,
payloads=payloads,
),
)
ids.extend(new_ids)
return ids
def delete(self, doc_id: str, **delete_kwargs: Any) -> None:
"""Delete a document.
Args:
doc_id: (str): document id
"""
from qdrant_client.http import models as rest
self._client.delete(
collection_name=self._collection_name,
points_selector=rest.Filter(
must=[
rest.FieldCondition(
key="doc_id", match=rest.MatchValue(value=doc_id)
)
]
),
)
@property
def client(self) -> Any:
"""Return the Qdrant client."""
return self._client
def _create_collection(self, collection_name: str, vector_size: int) -> None:
"""Create a Qdrant collection."""
from qdrant_client.http import models as rest
self._client.recreate_collection(
collection_name=collection_name,
vectors_config=rest.VectorParams(
size=vector_size,
distance=rest.Distance.COSINE,
),
)
self._collection_initialized = True
def _collection_exists(self, collection_name: str) -> bool:
"""Check if a collection exists."""
from grpc import RpcError
from qdrant_client.http.exceptions import UnexpectedResponse
try:
self._client.get_collection(collection_name)
except (RpcError, UnexpectedResponse):
return False
return True
def query(
self,
query: VectorStoreQuery,
) -> VectorStoreQueryResult:
"""Query index for top k most similar nodes.
Args:
query_embedding (List[float]): query embedding
similarity_top_k (int): top k most similar nodes
doc_ids (Optional[List[str]]): list of doc_ids to filter by
"""
from qdrant_client.http.models import (
FieldCondition,
Filter,
MatchValue,
Payload,
)
query_embedding = cast(List[float], query.query_embedding)
response = self._client.search(
collection_name=self._collection_name,
query_vector=query_embedding,
limit=cast(int, query.similarity_top_k),
query_filter=None
if not query.doc_ids
else Filter(
must=[
Filter(
should=[
FieldCondition(key="doc_id", match=MatchValue(value=doc_id))
for doc_id in query.doc_ids
],
)
]
),
)
logger.debug(f"> Top {len(response)} nodes:")
nodes = []
similarities = []
ids = []
for point in response:
payload = cast(Payload, point.payload)
node = Node(
doc_id=str(point.id),
text=payload.get("text"),
extra_info=payload.get("extra_info"),
relationships={
DocumentRelationship.SOURCE: payload.get("doc_id", "None"),
},
)
nodes.append(node)
similarities.append(point.score)
ids.append(str(point.id))
return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)