File size: 6,832 Bytes
b699122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""Qdrant vector store index.

An index that is built on top of an existing Qdrant collection.

"""
import logging
from typing import Any, Dict, List, Optional, cast

from gpt_index.data_structs.node_v2 import DocumentRelationship, Node
from gpt_index.utils import iter_batch
from gpt_index.vector_stores.types import (
    NodeEmbeddingResult,
    VectorStore,
    VectorStoreQueryResult,
    VectorStoreQuery,
)

logger = logging.getLogger(__name__)


class QdrantVectorStore(VectorStore):
    """Qdrant Vector Store.

    In this vector store, embeddings and docs are stored within a
    Qdrant collection.

    During query time, the index uses Qdrant to query for the top
    k most similar nodes.

    Args:
        collection_name: (str): name of the Qdrant collection
        client (Optional[Any]): QdrantClient instance from `qdrant-client` package
    """

    stores_text: bool = True

    def __init__(
        self, collection_name: str, client: Optional[Any] = None, **kwargs: Any
    ) -> None:
        """Init params."""
        import_err_msg = (
            "`qdrant-client` package not found, please run `pip install qdrant-client`"
        )
        try:
            import qdrant_client  # noqa: F401
        except ImportError:
            raise ImportError(import_err_msg)

        if client is None:
            raise ValueError("Missing Qdrant client!")

        self._client = cast(qdrant_client.QdrantClient, client)
        self._collection_name = collection_name
        self._collection_initialized = self._collection_exists(collection_name)

        self._batch_size = kwargs.get("batch_size", 100)

    @classmethod
    def from_dict(cls, config_dict: Dict[str, Any]) -> "VectorStore":
        if "client" not in config_dict:
            raise ValueError("Missing Qdrant client!")
        return cls(**config_dict)

    @property
    def config_dict(self) -> dict:
        """Return config dict."""
        return {
            "collection_name": self._collection_name,
        }

    def add(self, embedding_results: List[NodeEmbeddingResult]) -> List[str]:
        """Add embedding results to index.

        Args
            embedding_results: List[NodeEmbeddingResult]: list of embedding results

        """
        from qdrant_client.http import models as rest

        if len(embedding_results) > 0 and not self._collection_initialized:
            self._create_collection(
                collection_name=self._collection_name,
                vector_size=len(embedding_results[0].embedding),
            )

        ids = []
        for result_batch in iter_batch(embedding_results, self._batch_size):
            new_ids = []
            vectors = []
            payloads = []
            for result in result_batch:
                new_ids.append(result.id)
                vectors.append(result.embedding)
                node = result.node
                payloads.append(
                    {
                        "doc_id": result.doc_id,
                        "text": node.get_text(),
                        "extra_info": node.extra_info,
                    }
                )

            self._client.upsert(
                collection_name=self._collection_name,
                points=rest.Batch(
                    ids=new_ids,
                    vectors=vectors,
                    payloads=payloads,
                ),
            )
            ids.extend(new_ids)
        return ids

    def delete(self, doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document.

        Args:
            doc_id: (str): document id

        """
        from qdrant_client.http import models as rest

        self._client.delete(
            collection_name=self._collection_name,
            points_selector=rest.Filter(
                must=[
                    rest.FieldCondition(
                        key="doc_id", match=rest.MatchValue(value=doc_id)
                    )
                ]
            ),
        )

    @property
    def client(self) -> Any:
        """Return the Qdrant client."""
        return self._client

    def _create_collection(self, collection_name: str, vector_size: int) -> None:
        """Create a Qdrant collection."""
        from qdrant_client.http import models as rest

        self._client.recreate_collection(
            collection_name=collection_name,
            vectors_config=rest.VectorParams(
                size=vector_size,
                distance=rest.Distance.COSINE,
            ),
        )
        self._collection_initialized = True

    def _collection_exists(self, collection_name: str) -> bool:
        """Check if a collection exists."""
        from grpc import RpcError
        from qdrant_client.http.exceptions import UnexpectedResponse

        try:
            self._client.get_collection(collection_name)
        except (RpcError, UnexpectedResponse):
            return False
        return True

    def query(
        self,
        query: VectorStoreQuery,
    ) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes.

        Args:
            query_embedding (List[float]): query embedding
            similarity_top_k (int): top k most similar nodes
            doc_ids (Optional[List[str]]): list of doc_ids to filter by

        """
        from qdrant_client.http.models import (
            FieldCondition,
            Filter,
            MatchValue,
            Payload,
        )

        query_embedding = cast(List[float], query.query_embedding)

        response = self._client.search(
            collection_name=self._collection_name,
            query_vector=query_embedding,
            limit=cast(int, query.similarity_top_k),
            query_filter=None
            if not query.doc_ids
            else Filter(
                must=[
                    Filter(
                        should=[
                            FieldCondition(key="doc_id", match=MatchValue(value=doc_id))
                            for doc_id in query.doc_ids
                        ],
                    )
                ]
            ),
        )

        logger.debug(f"> Top {len(response)} nodes:")

        nodes = []
        similarities = []
        ids = []
        for point in response:
            payload = cast(Payload, point.payload)
            node = Node(
                doc_id=str(point.id),
                text=payload.get("text"),
                extra_info=payload.get("extra_info"),
                relationships={
                    DocumentRelationship.SOURCE: payload.get("doc_id", "None"),
                },
            )
            nodes.append(node)
            similarities.append(point.score)
            ids.append(str(point.id))

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)