Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import re | |
import pickle | |
import pdfminer | |
from pdfminer.high_level import extract_text | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Embedding, Conv1D, MaxPooling1D, LSTM, Dense, GlobalMaxPooling1D | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.utils import to_categorical | |
from sklearn.preprocessing import LabelEncoder | |
def cleanResume(resumeText): | |
resumeText = re.sub('http\S+\s*', ' ', resumeText) | |
resumeText = re.sub('RT|cc', ' ', resumeText) | |
resumeText = re.sub('#\S+', '', resumeText) | |
resumeText = re.sub('@\S+', ' ', resumeText) | |
resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText) | |
resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText) | |
resumeText = re.sub('\s+', ' ', resumeText) | |
return resumeText | |
def pdf_to_text(file): | |
text = extract_text(file) | |
return text | |
def predict_category(resumes_data, selected_category,max_sequence_length): | |
model = load_deeprank_model(max_sequence_length) | |
resumes_df = pd.DataFrame(resumes_data) | |
resumes_text = resumes_df['ResumeText'].values | |
tokenized_text = tokenizer.texts_to_sequences(resumes_text) | |
max_sequence_length = 500 | |
padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length) | |
predicted_probs = model.predict(padded_text) | |
for i, category in enumerate(label.classes_): | |
resumes_df[category] = predicted_probs[:, i] | |
resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False) | |
ranks = [] | |
for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows()): | |
rank = rank + 1 | |
file_name = row['FileName'] | |
ranks.append({'Rank': rank, 'FileName': file_name}) | |
return ranks | |
def load_deeprank_model(max_sequence_length): | |
model = Sequential() | |
model.add(Embedding(input_dim=vocab_size, output_dim=128, input_length=max_sequence_length)) | |
model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) | |
model.add(MaxPooling1D(pool_size=2)) | |
model.add(LSTM(64)) | |
model.add(Dense(num_classes, activation='softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
model.load_weights('deeprank_model_v2.h5') | |
return model | |
def main(): | |
st.title("Resume Ranking App") | |
st.text("Upload resumes and select a category to rank them.") | |
resumes_data = [] | |
selected_category = "" | |
files = st.file_uploader("Upload resumes", type=["pdf"], accept_multiple_files=True) | |
if files: | |
for file in files: | |
text = cleanResume(pdf_to_text(file)) | |
resumes_data.append({'ResumeText': text, 'FileName': file.name}) | |
selected_category = st.selectbox("Select a category to rank by", label.classes_) | |
if st.button("Rank Resumes"): | |
if not resumes_data or not selected_category: | |
st.warning("Please upload resumes and select a category to continue.") | |
else: | |
ranks = predict_category(resumes_data, selected_category,max_sequence_length) | |
st.write(pd.DataFrame(ranks)) | |
if __name__ == '__main__': | |
df = pd.read_csv('UpdatedResumeDataSet.csv') | |
df['cleaned'] = df['Resume'].apply(lambda x: cleanResume(x)) | |
label = LabelEncoder() | |
df['Category'] = label.fit_transform(df['Category']) | |
text = df['cleaned'].values | |
#text=df['Resume'].values | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(text) | |
vocab_size = len(tokenizer.word_index) + 1 | |
num_classes = len(label.classes_) | |
max_sequence_length = 500 | |
main() | |