import streamlit as st import pandas as pd import numpy as np import re import pickle import pdfminer from pdfminer.high_level import extract_text from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, Conv1D, MaxPooling1D, LSTM, Dense, GlobalMaxPooling1D from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.utils import to_categorical from sklearn.preprocessing import LabelEncoder def cleanResume(resumeText): resumeText = re.sub('http\S+\s*', ' ', resumeText) resumeText = re.sub('RT|cc', ' ', resumeText) resumeText = re.sub('#\S+', '', resumeText) resumeText = re.sub('@\S+', ' ', resumeText) resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText) resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText) resumeText = re.sub('\s+', ' ', resumeText) return resumeText def pdf_to_text(file): text = extract_text(file) return text def predict_category(resumes_data, selected_category,max_sequence_length): model = load_deeprank_model(max_sequence_length) resumes_df = pd.DataFrame(resumes_data) resumes_text = resumes_df['ResumeText'].values tokenized_text = tokenizer.texts_to_sequences(resumes_text) max_sequence_length = 500 padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length) predicted_probs = model.predict(padded_text) for i, category in enumerate(label.classes_): resumes_df[category] = predicted_probs[:, i] resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False) ranks = [] for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows()): rank = rank + 1 file_name = row['FileName'] ranks.append({'Rank': rank, 'FileName': file_name}) return ranks def load_deeprank_model(max_sequence_length): model = Sequential() model.add(Embedding(input_dim=vocab_size, output_dim=128, input_length=max_sequence_length)) model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(LSTM(64)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.load_weights('deeprank_model_v2.h5') return model def main(): st.title("Resume Ranking App") st.text("Upload resumes and select a category to rank them.") resumes_data = [] selected_category = "" files = st.file_uploader("Upload resumes", type=["pdf"], accept_multiple_files=True) if files: for file in files: text = cleanResume(pdf_to_text(file)) resumes_data.append({'ResumeText': text, 'FileName': file.name}) selected_category = st.selectbox("Select a category to rank by", label.classes_) if st.button("Rank Resumes"): if not resumes_data or not selected_category: st.warning("Please upload resumes and select a category to continue.") else: ranks = predict_category(resumes_data, selected_category,max_sequence_length) st.write(pd.DataFrame(ranks)) if __name__ == '__main__': df = pd.read_csv('UpdatedResumeDataSet.csv') df['cleaned'] = df['Resume'].apply(lambda x: cleanResume(x)) label = LabelEncoder() df['Category'] = label.fit_transform(df['Category']) text = df['cleaned'].values #text=df['Resume'].values tokenizer = Tokenizer() tokenizer.fit_on_texts(text) vocab_size = len(tokenizer.word_index) + 1 num_classes = len(label.classes_) max_sequence_length = 500 main()