|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import numpy as np |
|
import string |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("livekit/turn-detector") |
|
model = AutoModelForCausalLM.from_pretrained("livekit/turn-detector") |
|
|
|
|
|
def _softmax(logits: np.ndarray) -> np.ndarray: |
|
exp_logits = np.exp(logits - np.max(logits)) |
|
return exp_logits / np.sum(exp_logits) |
|
|
|
|
|
def get_eou_probability(chat_ctx: list) -> float: |
|
"""Calculate the probability of End of Utterance (EOU)""" |
|
|
|
text = " ".join([msg["content"] for msg in chat_ctx]) |
|
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits[0, -1, :] |
|
probs = _softmax(logits.numpy()) |
|
|
|
|
|
eou_token_id = tokenizer.encode("<|im_end|>")[-1] |
|
return probs[eou_token_id] |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
eou_probability = get_eou_probability(messages) |
|
print(f"EOU Probability: {eou_probability}") |
|
|
|
|
|
yield f"\nEOU Probability: {eou_probability:.2f}" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Bạn là một trợ lý ảo", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|