import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import numpy as np import string # Load tokenizer and model for EOU detection tokenizer = AutoTokenizer.from_pretrained("livekit/turn-detector") model = AutoModelForCausalLM.from_pretrained("livekit/turn-detector") # Define function to calculate softmax def _softmax(logits: np.ndarray) -> np.ndarray: exp_logits = np.exp(logits - np.max(logits)) return exp_logits / np.sum(exp_logits) # Define the EOU probability calculation def get_eou_probability(chat_ctx: list) -> float: """Calculate the probability of End of Utterance (EOU)""" # Normalize and prepare the chat context text = " ".join([msg["content"] for msg in chat_ctx]) inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True) # Run the model and get the logits with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits[0, -1, :] # Get logits of the last token probs = _softmax(logits.numpy()) # Convert logits to probabilities # Assuming <|im_end|> token corresponds to EOU, get the probability of that token eou_token_id = tokenizer.encode("<|im_end|>")[-1] return probs[eou_token_id] # Define the main response function for Gradio def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Get the response from the Qwen model (e.g., for conversation generation) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # After generating the response, get the EOU probability eou_probability = get_eou_probability(messages) # Get EOU prediction print(f"EOU Probability: {eou_probability}") # Include the EOU probability in the output yield f"\nEOU Probability: {eou_probability:.2f}" # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Bạn là một trợ lý ảo", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()