NCERL-Diverse-PCG / src /drl /train_async.py
baiyanlali-zhao's picture
添加注释
3582c8a
import importlib
from src.env.logger import *
from src.drl.ac_agents import *
from src.drl.rep_mem import ReplayMem
from src.utils.misc import record_time
from src.utils.filesys import auto_dire
from src.env.environments import AsyncOlGenEnv
from src.drl.trainer import AsyncOffpolicyTrainer
from src.drl.pmoe import PMOESoftActor
from analysis.tests import *
from src.gan.gankits import get_decoder
def set_common_args(parser):
parser.add_argument('--n_workers', type=int, default=20, help='Number of max_parallel processes in the environment.')
parser.add_argument('--queuesize', type=int, default=25, help='Size of waiting queue of the environment.')
parser.add_argument('--eplen', type=int, default=50, help='Episode length of the environment.')
parser.add_argument('--budget', type=int, default=int(1e6), help='Total time steps of training.')
parser.add_argument('--gamma', type=float, default=0.9, help='RL parameter')
parser.add_argument('--tar_entropy', type=float, default=-nz, help='SAC parameter, taget entropy')
parser.add_argument('--tau', type=float, default=0.02, help='SAC parameter, taget net smooth coefficient')
parser.add_argument('--update_per', type=int, default=2, help='Do one update (with one batch) per how many collected transitions')
parser.add_argument('--batch', type=int, default=256, help='Batch size for one update')
parser.add_argument('--mem_size', type=int, default=int(1e6), help='Size of replay memory')
parser.add_argument('--gpuid', type=int, default=0, help='ID of GPU to train the policy. CPU will be used if gpuid < 0')
parser.add_argument('--rfunc', type=str, default='default', help='Name of the reward function in src/env/rfuncs.py')
parser.add_argument('--path', type=str, default='', help='Path related to \'/training_data\'to save the training logs. If not specified, a new folder named SAC{id} will be created.')
parser.add_argument('--actor_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of actor net')
parser.add_argument('--critic_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of critic net')
parser.add_argument('--gen_period', type=int, default=20000, help='Period of saving level generation results')
parser.add_argument('--periodic_gen_num', type=int, default=200, help='Number of levels to be generated for each evaluation')
parser.add_argument('--redirect', action='store_true', help='If add this, redirect STD log to log.txt')
parser.add_argument(
'--check_points', type=int, nargs='+',
help='check points to save policy, specified by the number of time steps.'
)
def drl_train(foo):
"""
DRL Train, foo是被调用的函数, 如train_AsyncSAC.
"""
def __inner(args):
if not args.path:
path = auto_dire('training_data', args.name)
else:
path = getpath('training_data', args.path)
os.makedirs(path, exist_ok=True)
if os.path.exists(f'{path}/policy.pth'):
print(f'Trainning at <{path}> is skipped as there has a finished trial already.')
return
device = 'cpu' if args.gpuid < 0 or not torch.cuda.is_available() else f'cuda:{args.gpuid}'
evalpool = AsycSimltPool(args.n_workers, args.queuesize, args.rfunc, verbose=False)
rfunc = importlib.import_module('src.env.rfuncs').__getattribute__(f'{args.rfunc}')()
env = AsyncOlGenEnv(rfunc.get_n(), get_decoder('models/decoder.pth'), evalpool, args.eplen, device=device)
loggers = [
AsyncCsvLogger(f'{path}/log.csv', rfunc),
AsyncStdLogger(rfunc, 2000, f'{path}/log.txt' if args.redirect else '')
]
if args.periodic_gen_num > 0:
loggers.append(GenResLogger(path, args.periodic_gen_num, args.gen_period))
with open(path + '/run_configuration.txt', 'w') as f:
f.write(time.strftime('%Y-%m-%d %H:%M') + '\n')
f.write(f'---------{args.name}---------\n')
args_strlines = [
f'{key}={val}\n' for key, val in vars(args).items()
if key not in {'name', 'rfunc', 'path', 'entry'}
]
f.writelines(args_strlines)
f.write('-' * 50 + '\n')
f.write(str(rfunc))
N = rfunc.get_n()
with open(f'{path}/cfgs.json', 'w') as f:
data = {'N': N, 'gamma': args.gamma, 'h': args.eplen, 'rfunc': args.rfunc}
if args.name == 'MESAC':
data.update({'m': args.m, 'lambda': args.lbd, 'me_type': args.me_type})
json.dump(data, f)
obs_dim, act_dim = env.histlen * nz, nz
# 根据foo的不同返回agent, 返回的类型是ActCrtAgent
agent = foo(args, path, device, obs_dim, act_dim)
agent.to(device)
trainer = AsyncOffpolicyTrainer(
ReplayMem(args.mem_size, device=device), update_per=args.update_per, batch=args.batch
)
trainer.set_loggers(*loggers)
_, timecost = record_time(trainer.train)(env, agent, args.budget, path, check_points=args.check_points)
return __inner
############### AsyncSAC ###############
def set_AsyncSAC_parser(parser):
set_common_args(parser)
parser.add_argument('--name', type=str, default='AsyncSAC', help='Name of this algorithm.')
#同样的sac训练,但是多了异步
@drl_train
def train_AsyncSAC(args, path, device, obs_dim, act_dim):
actor = SoftActor(
lambda: GaussianMLP(obs_dim, act_dim, args.actor_hiddens), tar_ent=args.tar_entropy
)
critic = SoftDoubleClipCriticQ(
lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens), gamma=args.gamma, tau=args.tau
)
with open(f'{path}/nn_architecture.txt', 'w') as f:
f.writelines([
'-' * 24 + 'Actor' + '-' * 24 + '\n', actor.get_nn_arch_str(),
'-' * 24 + 'Critic-Q' + '-' * 24 + '\n', critic.get_nn_arch_str()
])
return SAC(actor, critic, device)
############## NCESAC ##############
def set_NCESAC_parser(parser):
set_common_args(parser)
parser.add_argument('--name', type=str, default='NCESAC', help='Name of this algorithm.')
parser.add_argument('--lbd', type=float, default=0.2, help='Weight of mutual exlusion regularisation')
parser.add_argument('--m', type=int, default=2, help='Number of ensemble heads in the actor')
parser.add_argument('--me_type', type=str, default='clip', choices=['log', 'clip', 'logclip'], help='Type of mutual exclusion regularisation')
parser.add_argument('--actor_net_type', type=str, default='mlp', choices=['mlp', 'conv'], help='Type of actor\'s NN')
@drl_train
def train_NCESAC(args, path, device, obs_dim, act_dim):
me_reg, actor_nn_constructor = None, None
# 初始化不同的正则化器
if args.me_type == 'log':
me_reg = LogWassersteinExclusion(args.lbd)
elif args.me_type == 'clip':
me_reg = ClipExclusion(args.lbd)
elif args.me_type == 'logclip':
me_reg = LogClipExclusion(args.lbd)
# 初始化不同的 网络构造器
if args.actor_net_type == 'conv':
actor_nn_constructor = lambda: EsmbGaussianConv(
obs_dim, act_dim, args.actor_hiddens, args.actor_hiddens, args.m
)
elif args.actor_net_type == 'mlp':
actor_nn_constructor = lambda: EsmbGaussianMLP(
obs_dim, act_dim, args.actor_hiddens, args.actor_hiddens, args.m
)
# 初始化Actor
actor = MERegMixSoftActor(actor_nn_constructor, me_reg, tar_ent=args.tar_entropy)
# 初始化Critic
critic = MERegSoftDoubleClipCriticQ(
lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens),
gamma=args.gamma, tau=args.tau
)
critic_U = MERegDoubleClipCriticW(
lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens),
gamma=args.gamma, tau=args.tau
)
# 保存神经网络架构
with open(f'{path}/nn_architecture.txt', 'w') as f:
f.writelines([
'-' * 24 + 'Actor' + '-' * 24 + '\n', actor.get_nn_arch_str(),
'-' * 24 + 'Critic-Q' + '-' * 24 + '\n', critic.get_nn_arch_str(),
'-' * 24 + 'Critic-U' + '-' * 24 + '\n', critic_U.get_nn_arch_str()
])
return MESAC(actor, critic, critic_U, device)
############## PMOESAC ##############
def set_PMOESAC_parser(parser):
set_common_args(parser)
parser.add_argument('--name', type=str, default='PMOESAC', help='Name of this algorithm.')
parser.add_argument('--m', type=int, default=5, help='Number of ensemble heads in the actor')
@drl_train
def train_PMOESAC(args, path, device, obs_dim, act_dim):
actor = PMOESoftActor(
lambda: EsmbGaussianMLP(obs_dim, act_dim, args.actor_hiddens, args.actor_hiddens, args.m),
tar_ent=args.tar_entropy
)
critic = SoftDoubleClipCriticQ(
lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens),
gamma=args.gamma, tau=args.tau
)
with open(f'{path}/nn_architecture.txt', 'w') as f:
f.writelines([
'-' * 24 + 'Actor' + '-' * 24 + '\n', actor.get_nn_arch_str(),
'-' * 24 + 'Critic-Q' + '-' * 24 + '\n', critic.get_nn_arch_str()
])
return SAC(actor, critic, device)