import importlib from src.env.logger import * from src.drl.ac_agents import * from src.drl.rep_mem import ReplayMem from src.utils.misc import record_time from src.utils.filesys import auto_dire from src.env.environments import AsyncOlGenEnv from src.drl.trainer import AsyncOffpolicyTrainer from src.drl.pmoe import PMOESoftActor from analysis.tests import * from src.gan.gankits import get_decoder def set_common_args(parser): parser.add_argument('--n_workers', type=int, default=20, help='Number of max_parallel processes in the environment.') parser.add_argument('--queuesize', type=int, default=25, help='Size of waiting queue of the environment.') parser.add_argument('--eplen', type=int, default=50, help='Episode length of the environment.') parser.add_argument('--budget', type=int, default=int(1e6), help='Total time steps of training.') parser.add_argument('--gamma', type=float, default=0.9, help='RL parameter') parser.add_argument('--tar_entropy', type=float, default=-nz, help='SAC parameter, taget entropy') parser.add_argument('--tau', type=float, default=0.02, help='SAC parameter, taget net smooth coefficient') parser.add_argument('--update_per', type=int, default=2, help='Do one update (with one batch) per how many collected transitions') parser.add_argument('--batch', type=int, default=256, help='Batch size for one update') parser.add_argument('--mem_size', type=int, default=int(1e6), help='Size of replay memory') parser.add_argument('--gpuid', type=int, default=0, help='ID of GPU to train the policy. CPU will be used if gpuid < 0') parser.add_argument('--rfunc', type=str, default='default', help='Name of the reward function in src/env/rfuncs.py') parser.add_argument('--path', type=str, default='', help='Path related to \'/training_data\'to save the training logs. If not specified, a new folder named SAC{id} will be created.') parser.add_argument('--actor_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of actor net') parser.add_argument('--critic_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of critic net') parser.add_argument('--gen_period', type=int, default=20000, help='Period of saving level generation results') parser.add_argument('--periodic_gen_num', type=int, default=200, help='Number of levels to be generated for each evaluation') parser.add_argument('--redirect', action='store_true', help='If add this, redirect STD log to log.txt') parser.add_argument( '--check_points', type=int, nargs='+', help='check points to save policy, specified by the number of time steps.' ) def drl_train(foo): """ DRL Train, foo是被调用的函数, 如train_AsyncSAC. """ def __inner(args): if not args.path: path = auto_dire('training_data', args.name) else: path = getpath('training_data', args.path) os.makedirs(path, exist_ok=True) if os.path.exists(f'{path}/policy.pth'): print(f'Trainning at <{path}> is skipped as there has a finished trial already.') return device = 'cpu' if args.gpuid < 0 or not torch.cuda.is_available() else f'cuda:{args.gpuid}' evalpool = AsycSimltPool(args.n_workers, args.queuesize, args.rfunc, verbose=False) rfunc = importlib.import_module('src.env.rfuncs').__getattribute__(f'{args.rfunc}')() env = AsyncOlGenEnv(rfunc.get_n(), get_decoder('models/decoder.pth'), evalpool, args.eplen, device=device) loggers = [ AsyncCsvLogger(f'{path}/log.csv', rfunc), AsyncStdLogger(rfunc, 2000, f'{path}/log.txt' if args.redirect else '') ] if args.periodic_gen_num > 0: loggers.append(GenResLogger(path, args.periodic_gen_num, args.gen_period)) with open(path + '/run_configuration.txt', 'w') as f: f.write(time.strftime('%Y-%m-%d %H:%M') + '\n') f.write(f'---------{args.name}---------\n') args_strlines = [ f'{key}={val}\n' for key, val in vars(args).items() if key not in {'name', 'rfunc', 'path', 'entry'} ] f.writelines(args_strlines) f.write('-' * 50 + '\n') f.write(str(rfunc)) N = rfunc.get_n() with open(f'{path}/cfgs.json', 'w') as f: data = {'N': N, 'gamma': args.gamma, 'h': args.eplen, 'rfunc': args.rfunc} if args.name == 'MESAC': data.update({'m': args.m, 'lambda': args.lbd, 'me_type': args.me_type}) json.dump(data, f) obs_dim, act_dim = env.histlen * nz, nz # 根据foo的不同返回agent, 返回的类型是ActCrtAgent agent = foo(args, path, device, obs_dim, act_dim) agent.to(device) trainer = AsyncOffpolicyTrainer( ReplayMem(args.mem_size, device=device), update_per=args.update_per, batch=args.batch ) trainer.set_loggers(*loggers) _, timecost = record_time(trainer.train)(env, agent, args.budget, path, check_points=args.check_points) return __inner ############### AsyncSAC ############### def set_AsyncSAC_parser(parser): set_common_args(parser) parser.add_argument('--name', type=str, default='AsyncSAC', help='Name of this algorithm.') #同样的sac训练,但是多了异步 @drl_train def train_AsyncSAC(args, path, device, obs_dim, act_dim): actor = SoftActor( lambda: GaussianMLP(obs_dim, act_dim, args.actor_hiddens), tar_ent=args.tar_entropy ) critic = SoftDoubleClipCriticQ( lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens), gamma=args.gamma, tau=args.tau ) with open(f'{path}/nn_architecture.txt', 'w') as f: f.writelines([ '-' * 24 + 'Actor' + '-' * 24 + '\n', actor.get_nn_arch_str(), '-' * 24 + 'Critic-Q' + '-' * 24 + '\n', critic.get_nn_arch_str() ]) return SAC(actor, critic, device) ############## NCESAC ############## def set_NCESAC_parser(parser): set_common_args(parser) parser.add_argument('--name', type=str, default='NCESAC', help='Name of this algorithm.') parser.add_argument('--lbd', type=float, default=0.2, help='Weight of mutual exlusion regularisation') parser.add_argument('--m', type=int, default=2, help='Number of ensemble heads in the actor') parser.add_argument('--me_type', type=str, default='clip', choices=['log', 'clip', 'logclip'], help='Type of mutual exclusion regularisation') parser.add_argument('--actor_net_type', type=str, default='mlp', choices=['mlp', 'conv'], help='Type of actor\'s NN') @drl_train def train_NCESAC(args, path, device, obs_dim, act_dim): me_reg, actor_nn_constructor = None, None # 初始化不同的正则化器 if args.me_type == 'log': me_reg = LogWassersteinExclusion(args.lbd) elif args.me_type == 'clip': me_reg = ClipExclusion(args.lbd) elif args.me_type == 'logclip': me_reg = LogClipExclusion(args.lbd) # 初始化不同的 网络构造器 if args.actor_net_type == 'conv': actor_nn_constructor = lambda: EsmbGaussianConv( obs_dim, act_dim, args.actor_hiddens, args.actor_hiddens, args.m ) elif args.actor_net_type == 'mlp': actor_nn_constructor = lambda: EsmbGaussianMLP( obs_dim, act_dim, args.actor_hiddens, args.actor_hiddens, args.m ) # 初始化Actor actor = MERegMixSoftActor(actor_nn_constructor, me_reg, tar_ent=args.tar_entropy) # 初始化Critic critic = MERegSoftDoubleClipCriticQ( lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens), gamma=args.gamma, tau=args.tau ) critic_U = MERegDoubleClipCriticW( lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens), gamma=args.gamma, tau=args.tau ) # 保存神经网络架构 with open(f'{path}/nn_architecture.txt', 'w') as f: f.writelines([ '-' * 24 + 'Actor' + '-' * 24 + '\n', actor.get_nn_arch_str(), '-' * 24 + 'Critic-Q' + '-' * 24 + '\n', critic.get_nn_arch_str(), '-' * 24 + 'Critic-U' + '-' * 24 + '\n', critic_U.get_nn_arch_str() ]) return MESAC(actor, critic, critic_U, device) ############## PMOESAC ############## def set_PMOESAC_parser(parser): set_common_args(parser) parser.add_argument('--name', type=str, default='PMOESAC', help='Name of this algorithm.') parser.add_argument('--m', type=int, default=5, help='Number of ensemble heads in the actor') @drl_train def train_PMOESAC(args, path, device, obs_dim, act_dim): actor = PMOESoftActor( lambda: EsmbGaussianMLP(obs_dim, act_dim, args.actor_hiddens, args.actor_hiddens, args.m), tar_ent=args.tar_entropy ) critic = SoftDoubleClipCriticQ( lambda : ObsActMLP(obs_dim, act_dim, args.critic_hiddens), gamma=args.gamma, tau=args.tau ) with open(f'{path}/nn_architecture.txt', 'w') as f: f.writelines([ '-' * 24 + 'Actor' + '-' * 24 + '\n', actor.get_nn_arch_str(), '-' * 24 + 'Critic-Q' + '-' * 24 + '\n', critic.get_nn_arch_str() ]) return SAC(actor, critic, device)