baiyanlali-zhao's picture
init
eaf2e33
import os
import json
import random
import time
import torch
import importlib
import numpy as np
from math import ceil
from torch import nn
from analysis.tests import evaluate_generator, evaluate_gen_log
from src.drl.ac_agents import SAC
from src.drl.ac_models import SoftActor, SoftDoubleClipCriticQ
from src.drl.nets import GaussianMLP, ObsActMLP
from src.drl.rep_mem import ReplayMem
from src.drl.trainer import AsyncOffpolicyTrainer
from src.env.environments import AsyncOlGenEnv
from src.env.logger import GenResLogger, AsyncCsvLogger, AsyncStdLogger
from src.gan.gankits import sample_latvec, get_decoder
from src.gan.gans import nz
from src.olgen.ol_generator import VecOnlineGenerator
from src.olgen.olg_policy import EnsembleGenPolicy
from src.smb.asyncsimlt import AsycSimltPool
from src.utils.filesys import getpath, auto_dire
from src.utils.misc import record_time
################## Borrowed from https://github.com/jjccero/DvD_TD3 ##################
class TS:
def __init__(self, arms=None, random_choice=6):
self.arms = [0.0, 0.5] if arms is None else arms
self.arm_num = len(self.arms)
self.alpha = np.ones(self.arm_num, dtype=int)
self.beta = np.ones(self.arm_num, dtype=int)
self.arm = 0
self.choices = 0
self.random_choice = random_choice
@property
def value(self):
return self.arms[self.arm]
def update(self, reward):
self.choices += 1
if reward:
self.alpha[self.arm] += 1
else:
self.beta[self.arm] += 1
def sample(self):
if self.choices < self.random_choice:
self.arm = np.random.choice(self.arm_num)
else:
self.arm = np.argmax(np.random.beta(self.alpha, self.beta))
return self.value
def clear(self):
self.alpha[:] = 1
self.beta[:] = 1
self.choices = 0
def l2rbf(m_actions):
actions = torch.stack(m_actions)
x1 = actions.unsqueeze(0).repeat_interleave(actions.shape[0], 0)
x2 = actions.unsqueeze(1).repeat_interleave(actions.shape[0], 1)
d2 = torch.square(x1 - x2)
l2 = torch.var(actions, dim=0).detach() + 1e-8
return (d2 / (2 * l2)).mean(-1)
class LogDet(nn.Module):
def __init__(self, beta=0.99):
super(LogDet, self).__init__()
self.beta = beta
def forward(self, embeddings):
d = l2rbf(embeddings)
K = (-d).exp()
K_ = self.beta * K + (1 - self.beta) * torch.eye(len(embeddings), device=K.device)
L = torch.linalg.cholesky(K_)
log_det = 2 * torch.log(torch.diag(L)).sum()
return log_det
#######################################################################################
class PESACAgent:
def __init__(self, subs, device='cpu'):
self.subs = subs
self.device = device
self.to(device)
self.i = 0
self.test = False
def to(self, device):
for sub in self.subs:
sub.to(device)
self.device = device
def update(self, obs, acts, rews, ops):
for sub in self.subs:
sub.update(obs, acts, rews, ops)
pass
def next(self):
self.i += 1
self.i %= len(self.subs)
def make_decision(self, obs, **kwargs):
if self.test:
sub = self.subs[random.randrange(0, len(self.subs))]
else:
sub = self.subs[self.i]
a, _ = sub.actor.forward(
torch.tensor(obs, dtype=torch.float, device=self.device),
grad=False, **kwargs
)
return a.squeeze().cpu().numpy()
class DvDAgent(PESACAgent):
def __init__(self, subs, phi_batch=20, device='cpu'):
super().__init__(subs, device)
self.div_coe = 0.0
self.phi_batch = phi_batch
self.log_det = LogDet()
self.bandit = TS()
def div_loss(self, obs):
o = obs[:self.phi_batch]
embeddings = [sub.actor.forward(o)[0].flatten() for sub in self.subs]
return self.log_det(embeddings).exp()
def update(self, obs, acts, rews, ops):
for sub in self.subs:
sub.actor.zero_grads()
ldiv = self.div_coe * self.div_loss(obs)
ldiv.backward()
for sub in self.subs:
sub.actor.backward_policy(sub.critic, obs, (1 - self.div_coe))
sub.actor.backward_alpha(obs)
sub.actor.grad_step()
sub.critic.zero_grads()
sub.critic.backward_mse(sub.actor, obs, acts, rews, ops)
sub.critic.grad_step()
sub.critic.update_tarnet()
def adapt_div_coe(self, delta):
self.bandit.update(delta > 0)
self.div_coe = self.bandit.sample()
print('Lambda: %.4g' % self.div_coe)
class DvDTrainer(AsyncOffpolicyTrainer):
def __init__(self, rep_mem:ReplayMem=None, update_per=1, batch=256, eval_itv=20000, eval_num=50):
super().__init__(rep_mem, update_per, batch)
self.eval_logger = None
self.mean_return = 0
self.env = None
self.agent = None
self.eval_itv = eval_itv if eval_itv >= 0 else eval_itv
self.eval_num = eval_num if eval_num >= 0 else eval_num
def train(self, env:AsyncOlGenEnv, agent: DvDAgent, budget, path, check_points=None):
self._reset()
self.env = env
self.agent = agent
o = self.env.reset()
for logger in self.loggers:
if logger.__class__.__name__ == 'GenResLogger':
self.agent.test = True
logger.on_episode(self.env, agent, 0)
self.agent.test = False
eval_horizon = self.eval_itv
self.__eval()
while self.steps < budget:
a = agent.make_decision(o)
o, done = env.step(a)
self.steps += 1
if done:
model_credits = ceil(1.25 * env.eplen / self.update_per)
self._update(model_credits, env, agent)
agent.next()
if self.steps >= eval_horizon:
self.__eval()
eval_horizon += self.eval_itv
self._update(0, env, agent, close=True)
for i, sub in enumerate(self.agent.subs):
torch.save(sub.actor.net, getpath(f'{path}/policy{i}.pth'))
def __eval(self):
if self.steps > 0:
transitions, rewss = self.env.rollout(wait=True)
self.rep_mem.add_transitions(transitions)
self.num_trans += len(transitions)
self.agent.test = True
it = 0
o = self.env.reset()
rewss = []
while it < self.eval_num:
a = self.agent.make_decision(o)
o, done = self.env.step(a)
if done:
rewss += self.env.rollout()[1]
it +=1
rewss += self.env.rollout(wait=True)[1]
rewss = np.array([[v for v in rews.values()] for rews in rewss])
mean_return = float(np.sum(rewss, axis=1).mean())
if self.steps > 0:
self.agent.adapt_div_coe(mean_return - self.mean_return)
self.mean_return = mean_return
self.agent.test = False
def _update(self, model_credits, env, agent, close=False):
transitions, rewss = env.close() if close else env.rollout()
self.rep_mem.add_transitions(transitions)
self.num_trans += len(transitions)
if len(self.rep_mem) > self.batch:
t = 1
while self.num_trans >= (self.num_updates + 1) * self.update_per:
agent.update(*self.rep_mem.sample(self.batch))
self.num_updates += 1
if not close and t == model_credits:
break
t += 1
for logger in self.loggers:
loginfo = self._pack_loginfo(rewss)
if logger.__class__.__name__ == 'GenResLogger':
agent.test = True
logger.on_episode(env, agent, self.steps)
agent.test = False
else:
logger.on_episode(**loginfo, close=close)
def _reset(self):
self.mean_return = 0
self.start_time = time.time()
self.steps = 0
self.num_trans = 0
self.num_updates = 0
self.env = None
self.agent = None
####################### Comand Line Configuration #######################
def set_DvDSAC_parser(parser):
parser.add_argument('--n_workers', type=int, default=20, help='Number of max_parallel processes in the environment.')
parser.add_argument('--queuesize', type=int, default=25, help='Size of waiting queue of the environment.')
parser.add_argument('--eplen', type=int, default=50, help='Episode length of the environment.')
parser.add_argument('--budget', type=int, default=int(1e6), help='Total time steps of training.')
parser.add_argument('--gamma', type=float, default=0.9, help='RL parameter')
parser.add_argument('--tar_entropy', type=float, default=-nz, help='SAC parameter, taget entropy')
parser.add_argument('--tau', type=float, default=0.02, help='SAC parameter, taget net smooth coefficient')
parser.add_argument('--update_per', type=int, default=2, help='Do one update (with one batch) per how many collected transitions')
parser.add_argument('--batch', type=int, default=256, help='Batch size for one update')
parser.add_argument('--mem_size', type=int, default=int(1e6), help='Size of replay memory')
parser.add_argument('--gpuid', type=int, default=0, help='ID of GPU to train the policy. CPU will be used if gpuid < 0')
parser.add_argument('--rfunc', type=str, default='default', help='Name of the reward function in src/env/rfuncs.py')
parser.add_argument('--path', type=str, default='', help='Path related to \'/training_data\'to save the training logs. If not specified, a new folder named SAC{id} will be created.')
parser.add_argument('--actor_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of actor net')
parser.add_argument('--critic_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of critic net')
parser.add_argument('--gen_period', type=int, default=20000, help='Period of saving level generation results')
parser.add_argument('--periodic_gen_num', type=int, default=200, help='Number of levels to be generated for each evaluation')
parser.add_argument('--redirect', action='store_true', help='If add this, redirect STD log to log.txt')
parser.add_argument(
'--check_points', type=int, nargs='+',
help='check points to save policy, specified by the number of time steps.'
)
parser.add_argument('--name', type=str, default='DvDSAC', help='Name of this algorithm.')
parser.add_argument('--m', type=int, default=5, help='Number of ensemble heads in the actor')
parser.add_argument('--eval_itv', type=int, default=20000, help='Period of evaluating policy and adapt diversity loss coefficient')
parser.add_argument('--eval_num', type=int, default=50, help='Number of evaluation times')
pass
def train_DvDSAC(args):
def _construct_agent(_args, _path, _device, _obs_dim, _act_dim):
subs = []
for i in range(_args.m):
actor = SoftActor(
lambda: GaussianMLP(_obs_dim, _act_dim, _args.actor_hiddens), tar_ent=_args.tar_entropy
)
critic = SoftDoubleClipCriticQ(
lambda: ObsActMLP(_obs_dim, _act_dim, _args.critic_hiddens), gamma=_args.gamma, tau=_args.tau
)
subs.append(SAC(actor, critic, _device))
with open(f'{_path}/nn_architecture.txt', 'w') as f:
f.writelines([
'-' * 24 + 'Actor' + '-' * 24 + '\n', subs[0].actor.get_nn_arch_str(),
'-' * 24 + 'Critic-Q' + '-' * 24 + '\n', subs[0].critic.get_nn_arch_str()
])
return DvDAgent(subs, device=_device)
if not args.path:
path = auto_dire('training_data', args.name)
else:
path = getpath('training_data', args.path)
os.makedirs(path, exist_ok=True)
if os.path.exists(f'{path}/policy.pth'):
print(f'Trainning at <{path}> is skipped as there has a finished trial already.')
return
device = 'cpu' if args.gpuid < 0 or not torch.cuda.is_available() else f'cuda:{args.gpuid}'
evalpool = AsycSimltPool(args.n_workers, args.queuesize, args.rfunc, verbose=False)
rfunc = importlib.import_module('src.env.rfuncs').__getattribute__(f'{args.rfunc}')()
env = AsyncOlGenEnv(rfunc.get_n(), get_decoder('models/decoder.pth'), evalpool, args.eplen, device=device)
loggers = [
AsyncCsvLogger(f'{path}/log.csv', rfunc),
AsyncStdLogger(rfunc, 2000, f'{path}/log.txt' if args.redirect else '')
]
if args.periodic_gen_num > 0:
loggers.append(GenResLogger(path, args.periodic_gen_num, args.gen_period))
with open(path + '/run_configuration.txt', 'w') as f:
f.write(time.strftime('%Y-%m-%d %H:%M') + '\n')
f.write(f'---------{args.name}---------\n')
args_strlines = [
f'{key}={val}\n' for key, val in vars(args).items()
if key not in {'name', 'rfunc', 'path', 'entry'}
]
f.writelines(args_strlines)
f.write('-' * 50 + '\n')
f.write(str(rfunc))
N = rfunc.get_n()
with open(f'{path}/cfgs.json', 'w') as f:
data = {'N': N, 'gamma': args.gamma, 'h': args.eplen, 'rfunc': args.rfunc, 'm': args.m}
json.dump(data, f)
obs_dim, act_dim = env.histlen * nz, nz
agent = _construct_agent(args, path, device, obs_dim, act_dim)
agent.to(device)
trainer = DvDTrainer(
ReplayMem(args.mem_size, device=device), update_per=args.update_per, batch=args.batch,
eval_itv=args.eval_itv, eval_num=args.eval_num
)
trainer.set_loggers(*loggers)
_, timecost = record_time(trainer.train)(env, agent, args.budget, path, check_points=args.check_points)