Spaces:
Sleeping
Sleeping
File size: 13,989 Bytes
eaf2e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import os
import json
import random
import time
import torch
import importlib
import numpy as np
from math import ceil
from torch import nn
from analysis.tests import evaluate_generator, evaluate_gen_log
from src.drl.ac_agents import SAC
from src.drl.ac_models import SoftActor, SoftDoubleClipCriticQ
from src.drl.nets import GaussianMLP, ObsActMLP
from src.drl.rep_mem import ReplayMem
from src.drl.trainer import AsyncOffpolicyTrainer
from src.env.environments import AsyncOlGenEnv
from src.env.logger import GenResLogger, AsyncCsvLogger, AsyncStdLogger
from src.gan.gankits import sample_latvec, get_decoder
from src.gan.gans import nz
from src.olgen.ol_generator import VecOnlineGenerator
from src.olgen.olg_policy import EnsembleGenPolicy
from src.smb.asyncsimlt import AsycSimltPool
from src.utils.filesys import getpath, auto_dire
from src.utils.misc import record_time
################## Borrowed from https://github.com/jjccero/DvD_TD3 ##################
class TS:
def __init__(self, arms=None, random_choice=6):
self.arms = [0.0, 0.5] if arms is None else arms
self.arm_num = len(self.arms)
self.alpha = np.ones(self.arm_num, dtype=int)
self.beta = np.ones(self.arm_num, dtype=int)
self.arm = 0
self.choices = 0
self.random_choice = random_choice
@property
def value(self):
return self.arms[self.arm]
def update(self, reward):
self.choices += 1
if reward:
self.alpha[self.arm] += 1
else:
self.beta[self.arm] += 1
def sample(self):
if self.choices < self.random_choice:
self.arm = np.random.choice(self.arm_num)
else:
self.arm = np.argmax(np.random.beta(self.alpha, self.beta))
return self.value
def clear(self):
self.alpha[:] = 1
self.beta[:] = 1
self.choices = 0
def l2rbf(m_actions):
actions = torch.stack(m_actions)
x1 = actions.unsqueeze(0).repeat_interleave(actions.shape[0], 0)
x2 = actions.unsqueeze(1).repeat_interleave(actions.shape[0], 1)
d2 = torch.square(x1 - x2)
l2 = torch.var(actions, dim=0).detach() + 1e-8
return (d2 / (2 * l2)).mean(-1)
class LogDet(nn.Module):
def __init__(self, beta=0.99):
super(LogDet, self).__init__()
self.beta = beta
def forward(self, embeddings):
d = l2rbf(embeddings)
K = (-d).exp()
K_ = self.beta * K + (1 - self.beta) * torch.eye(len(embeddings), device=K.device)
L = torch.linalg.cholesky(K_)
log_det = 2 * torch.log(torch.diag(L)).sum()
return log_det
#######################################################################################
class PESACAgent:
def __init__(self, subs, device='cpu'):
self.subs = subs
self.device = device
self.to(device)
self.i = 0
self.test = False
def to(self, device):
for sub in self.subs:
sub.to(device)
self.device = device
def update(self, obs, acts, rews, ops):
for sub in self.subs:
sub.update(obs, acts, rews, ops)
pass
def next(self):
self.i += 1
self.i %= len(self.subs)
def make_decision(self, obs, **kwargs):
if self.test:
sub = self.subs[random.randrange(0, len(self.subs))]
else:
sub = self.subs[self.i]
a, _ = sub.actor.forward(
torch.tensor(obs, dtype=torch.float, device=self.device),
grad=False, **kwargs
)
return a.squeeze().cpu().numpy()
class DvDAgent(PESACAgent):
def __init__(self, subs, phi_batch=20, device='cpu'):
super().__init__(subs, device)
self.div_coe = 0.0
self.phi_batch = phi_batch
self.log_det = LogDet()
self.bandit = TS()
def div_loss(self, obs):
o = obs[:self.phi_batch]
embeddings = [sub.actor.forward(o)[0].flatten() for sub in self.subs]
return self.log_det(embeddings).exp()
def update(self, obs, acts, rews, ops):
for sub in self.subs:
sub.actor.zero_grads()
ldiv = self.div_coe * self.div_loss(obs)
ldiv.backward()
for sub in self.subs:
sub.actor.backward_policy(sub.critic, obs, (1 - self.div_coe))
sub.actor.backward_alpha(obs)
sub.actor.grad_step()
sub.critic.zero_grads()
sub.critic.backward_mse(sub.actor, obs, acts, rews, ops)
sub.critic.grad_step()
sub.critic.update_tarnet()
def adapt_div_coe(self, delta):
self.bandit.update(delta > 0)
self.div_coe = self.bandit.sample()
print('Lambda: %.4g' % self.div_coe)
class DvDTrainer(AsyncOffpolicyTrainer):
def __init__(self, rep_mem:ReplayMem=None, update_per=1, batch=256, eval_itv=20000, eval_num=50):
super().__init__(rep_mem, update_per, batch)
self.eval_logger = None
self.mean_return = 0
self.env = None
self.agent = None
self.eval_itv = eval_itv if eval_itv >= 0 else eval_itv
self.eval_num = eval_num if eval_num >= 0 else eval_num
def train(self, env:AsyncOlGenEnv, agent: DvDAgent, budget, path, check_points=None):
self._reset()
self.env = env
self.agent = agent
o = self.env.reset()
for logger in self.loggers:
if logger.__class__.__name__ == 'GenResLogger':
self.agent.test = True
logger.on_episode(self.env, agent, 0)
self.agent.test = False
eval_horizon = self.eval_itv
self.__eval()
while self.steps < budget:
a = agent.make_decision(o)
o, done = env.step(a)
self.steps += 1
if done:
model_credits = ceil(1.25 * env.eplen / self.update_per)
self._update(model_credits, env, agent)
agent.next()
if self.steps >= eval_horizon:
self.__eval()
eval_horizon += self.eval_itv
self._update(0, env, agent, close=True)
for i, sub in enumerate(self.agent.subs):
torch.save(sub.actor.net, getpath(f'{path}/policy{i}.pth'))
def __eval(self):
if self.steps > 0:
transitions, rewss = self.env.rollout(wait=True)
self.rep_mem.add_transitions(transitions)
self.num_trans += len(transitions)
self.agent.test = True
it = 0
o = self.env.reset()
rewss = []
while it < self.eval_num:
a = self.agent.make_decision(o)
o, done = self.env.step(a)
if done:
rewss += self.env.rollout()[1]
it +=1
rewss += self.env.rollout(wait=True)[1]
rewss = np.array([[v for v in rews.values()] for rews in rewss])
mean_return = float(np.sum(rewss, axis=1).mean())
if self.steps > 0:
self.agent.adapt_div_coe(mean_return - self.mean_return)
self.mean_return = mean_return
self.agent.test = False
def _update(self, model_credits, env, agent, close=False):
transitions, rewss = env.close() if close else env.rollout()
self.rep_mem.add_transitions(transitions)
self.num_trans += len(transitions)
if len(self.rep_mem) > self.batch:
t = 1
while self.num_trans >= (self.num_updates + 1) * self.update_per:
agent.update(*self.rep_mem.sample(self.batch))
self.num_updates += 1
if not close and t == model_credits:
break
t += 1
for logger in self.loggers:
loginfo = self._pack_loginfo(rewss)
if logger.__class__.__name__ == 'GenResLogger':
agent.test = True
logger.on_episode(env, agent, self.steps)
agent.test = False
else:
logger.on_episode(**loginfo, close=close)
def _reset(self):
self.mean_return = 0
self.start_time = time.time()
self.steps = 0
self.num_trans = 0
self.num_updates = 0
self.env = None
self.agent = None
####################### Comand Line Configuration #######################
def set_DvDSAC_parser(parser):
parser.add_argument('--n_workers', type=int, default=20, help='Number of max_parallel processes in the environment.')
parser.add_argument('--queuesize', type=int, default=25, help='Size of waiting queue of the environment.')
parser.add_argument('--eplen', type=int, default=50, help='Episode length of the environment.')
parser.add_argument('--budget', type=int, default=int(1e6), help='Total time steps of training.')
parser.add_argument('--gamma', type=float, default=0.9, help='RL parameter')
parser.add_argument('--tar_entropy', type=float, default=-nz, help='SAC parameter, taget entropy')
parser.add_argument('--tau', type=float, default=0.02, help='SAC parameter, taget net smooth coefficient')
parser.add_argument('--update_per', type=int, default=2, help='Do one update (with one batch) per how many collected transitions')
parser.add_argument('--batch', type=int, default=256, help='Batch size for one update')
parser.add_argument('--mem_size', type=int, default=int(1e6), help='Size of replay memory')
parser.add_argument('--gpuid', type=int, default=0, help='ID of GPU to train the policy. CPU will be used if gpuid < 0')
parser.add_argument('--rfunc', type=str, default='default', help='Name of the reward function in src/env/rfuncs.py')
parser.add_argument('--path', type=str, default='', help='Path related to \'/training_data\'to save the training logs. If not specified, a new folder named SAC{id} will be created.')
parser.add_argument('--actor_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of actor net')
parser.add_argument('--critic_hiddens', type=int, nargs='+', default=[256, 256], help='List of number of units in each hideen layer of critic net')
parser.add_argument('--gen_period', type=int, default=20000, help='Period of saving level generation results')
parser.add_argument('--periodic_gen_num', type=int, default=200, help='Number of levels to be generated for each evaluation')
parser.add_argument('--redirect', action='store_true', help='If add this, redirect STD log to log.txt')
parser.add_argument(
'--check_points', type=int, nargs='+',
help='check points to save policy, specified by the number of time steps.'
)
parser.add_argument('--name', type=str, default='DvDSAC', help='Name of this algorithm.')
parser.add_argument('--m', type=int, default=5, help='Number of ensemble heads in the actor')
parser.add_argument('--eval_itv', type=int, default=20000, help='Period of evaluating policy and adapt diversity loss coefficient')
parser.add_argument('--eval_num', type=int, default=50, help='Number of evaluation times')
pass
def train_DvDSAC(args):
def _construct_agent(_args, _path, _device, _obs_dim, _act_dim):
subs = []
for i in range(_args.m):
actor = SoftActor(
lambda: GaussianMLP(_obs_dim, _act_dim, _args.actor_hiddens), tar_ent=_args.tar_entropy
)
critic = SoftDoubleClipCriticQ(
lambda: ObsActMLP(_obs_dim, _act_dim, _args.critic_hiddens), gamma=_args.gamma, tau=_args.tau
)
subs.append(SAC(actor, critic, _device))
with open(f'{_path}/nn_architecture.txt', 'w') as f:
f.writelines([
'-' * 24 + 'Actor' + '-' * 24 + '\n', subs[0].actor.get_nn_arch_str(),
'-' * 24 + 'Critic-Q' + '-' * 24 + '\n', subs[0].critic.get_nn_arch_str()
])
return DvDAgent(subs, device=_device)
if not args.path:
path = auto_dire('training_data', args.name)
else:
path = getpath('training_data', args.path)
os.makedirs(path, exist_ok=True)
if os.path.exists(f'{path}/policy.pth'):
print(f'Trainning at <{path}> is skipped as there has a finished trial already.')
return
device = 'cpu' if args.gpuid < 0 or not torch.cuda.is_available() else f'cuda:{args.gpuid}'
evalpool = AsycSimltPool(args.n_workers, args.queuesize, args.rfunc, verbose=False)
rfunc = importlib.import_module('src.env.rfuncs').__getattribute__(f'{args.rfunc}')()
env = AsyncOlGenEnv(rfunc.get_n(), get_decoder('models/decoder.pth'), evalpool, args.eplen, device=device)
loggers = [
AsyncCsvLogger(f'{path}/log.csv', rfunc),
AsyncStdLogger(rfunc, 2000, f'{path}/log.txt' if args.redirect else '')
]
if args.periodic_gen_num > 0:
loggers.append(GenResLogger(path, args.periodic_gen_num, args.gen_period))
with open(path + '/run_configuration.txt', 'w') as f:
f.write(time.strftime('%Y-%m-%d %H:%M') + '\n')
f.write(f'---------{args.name}---------\n')
args_strlines = [
f'{key}={val}\n' for key, val in vars(args).items()
if key not in {'name', 'rfunc', 'path', 'entry'}
]
f.writelines(args_strlines)
f.write('-' * 50 + '\n')
f.write(str(rfunc))
N = rfunc.get_n()
with open(f'{path}/cfgs.json', 'w') as f:
data = {'N': N, 'gamma': args.gamma, 'h': args.eplen, 'rfunc': args.rfunc, 'm': args.m}
json.dump(data, f)
obs_dim, act_dim = env.histlen * nz, nz
agent = _construct_agent(args, path, device, obs_dim, act_dim)
agent.to(device)
trainer = DvDTrainer(
ReplayMem(args.mem_size, device=device), update_per=args.update_per, batch=args.batch,
eval_itv=args.eval_itv, eval_num=args.eval_num
)
trainer.set_loggers(*loggers)
_, timecost = record_time(trainer.train)(env, agent, args.budget, path, check_points=args.check_points)
|