Comp-I / docs /PHASE3_FINAL_DASHBOARD_GUIDE.md
axrzce's picture
Deploy from GitHub main
338d95d verified
|
raw
history blame
10.8 kB
# πŸ§ͺ CompI Phase 3 Final Dashboard - Complete Integration Guide
## 🎯 **What This Delivers**
**The Phase 3 Final Dashboard is the ultimate CompI interface that integrates ALL Phase 3 components into a single, unified creative environment.**
### **πŸš€ Complete Feature Integration:**
#### **🧩 Phase 3.A/3.B: True Multimodal Fusion**
- **Real Audio Processing**: Whisper transcription + librosa feature analysis
- **Actual Data Analysis**: CSV processing + mathematical formula evaluation
- **Sentiment Analysis**: TextBlob emotion detection with polarity scoring
- **Live Real-time Data**: Weather API + RSS news feeds integration
- **Intelligent Fusion**: All inputs combined into enhanced prompts
#### **πŸ–ΌοΈ Phase 3.C: Advanced References**
- **Multi-Reference Support**: Upload files + paste URLs simultaneously
- **Role-Based Assignment**: Separate style vs structure reference selection
- **Live ControlNet Previews**: Real-time Canny/Depth map generation
- **Hybrid Generation**: CN+I2I with intelligent fallback to two-pass approach
- **Professional Controls**: Fine-grained parameter control for all aspects
#### **βš™οΈ Phase 3.E: Performance Management**
- **Model Switching**: SD 1.5 ↔ SDXL with automatic availability checking
- **LoRA Integration**: Load and scale LoRA weights with visual feedback
- **Performance Optimizations**: xFormers, attention slicing, VAE optimizations
- **VRAM Monitoring**: Real-time GPU memory usage tracking
- **OOM Recovery**: Progressive fallback with intelligent retry strategies
- **Optional Upscaling**: Latent upscaler integration for quality enhancement
#### **πŸŽ›οΈ Phase 3.D: Professional Workflow**
- **Advanced Gallery**: Image filtering by mode, prompt, steps with visual grid
- **Annotation System**: Rating (1-5), tags, notes for comprehensive organization
- **Preset Management**: Save/load complete generation configurations
- **Export Bundles**: Complete ZIP packages with images, metadata, annotations, presets
---
## πŸ—οΈ **Architecture Overview**
### **7-Tab Unified Interface:**
```python
1. 🧩 Inputs (Text/Audio/Data/Emotion/Real‑time) # Phase 3.A/3.B
2. πŸ–ΌοΈ Advanced References # Phase 3.C
3. βš™οΈ Model & Performance # Phase 3.E
4. πŸŽ›οΈ Generate # Unified generation
5. πŸ–ΌοΈ Gallery & Annotate # Phase 3.D
6. πŸ’Ύ Presets # Phase 3.D
7. πŸ“¦ Export # Phase 3.D
```
### **Intelligent Generation Modes:**
```python
# Smart mode selection based on available inputs:
mode = "T2I" # Text-to-Image (baseline)
if have_cn and have_style: mode = "CN+I2I" # Hybrid ControlNet + Img2Img
elif have_cn: mode = "CN" # ControlNet only
elif have_style: mode = "I2I" # Img2Img only
```
### **Real-time Performance Monitoring:**
```python
# Live VRAM tracking in header
colA: Device (CUDA/CPU)
colB: Total VRAM (GB)
colC: Used VRAM (GB)
colD: PyTorch version + status
```
---
## 🎨 **Professional Workflow**
### **Complete Creative Process:**
#### **1. Configure Multimodal Inputs (Tab 1)**
- **Text & Style**: Main prompt, artistic style, mood, negative prompt
- **Audio Analysis**: Upload audio β†’ Whisper transcription β†’ librosa features
- **Data Processing**: CSV upload or mathematical formulas β†’ visualization
- **Emotion Analysis**: Sentiment analysis with TextBlob polarity scoring
- **Real-time Feeds**: Weather data + news headlines integration
#### **2. Advanced References (Tab 2)**
- **Multi-Reference Upload**: Files + URLs simultaneously supported
- **Role Assignment**: Select images for style influence vs structure control
- **ControlNet Integration**: Choose Canny or Depth with live preview
- **Parameter Control**: Conditioning scale, img2img strength adjustment
#### **3. Model & Performance (Tab 3)**
- **Model Selection**: SD 1.5 (fast) or SDXL (quality) based on VRAM
- **LoRA Integration**: Load custom LoRA weights with scale control
- **Performance Tuning**: xFormers, attention slicing, VAE optimizations
- **Reliability Settings**: OOM auto-retry, batch processing, upscaling
#### **4. Intelligent Generation (Tab 4)**
- **Fusion Preview**: See combined prompt from all inputs
- **Smart Mode Selection**: Automatic best approach based on available inputs
- **Batch Processing**: Multiple images with seed control
- **Real-time Feedback**: Progress tracking and error handling
#### **5. Gallery Management (Tab 5)**
- **Advanced Filtering**: By mode, prompt content, generation parameters
- **Visual Gallery**: 4-column grid with image previews and metadata
- **Annotation System**: Rate (1-5), tag, and add notes to images
- **Batch Operations**: Select multiple images for annotation
#### **6. Preset System (Tab 6)**
- **Configuration Capture**: Save complete generation settings
- **JSON Preview**: See exact preset structure before saving
- **Load Management**: Browse and load existing presets
- **Reusability**: Apply saved settings to new generations
#### **7. Export Bundles (Tab 7)**
- **Complete Packages**: Images + metadata + annotations + presets
- **Reproducibility**: Full environment snapshots for exact reproduction
- **Professional Format**: ZIP bundles with manifest and README
- **Selective Export**: Choose specific images and include optional presets
---
## πŸš€ **Quick Start Guide**
### **1. Launch the Dashboard**
```bash
# Method 1: Using launcher (recommended)
python run_phase3_final_dashboard.py
# Method 2: Direct Streamlit launch
streamlit run src/ui/compi_phase3_final_dashboard.py --server.port 8506
```
### **2. Access the Interface**
- **URL:** `http://localhost:8506`
- **Interface:** Professional 7-tab dashboard with real-time monitoring
- **Header:** Live VRAM usage and system status
### **3. Basic Workflow**
1. **Configure Inputs**: Set up text, audio, data, emotion, real-time feeds
2. **Add References**: Upload images and assign style/structure roles
3. **Choose Model**: Select SD 1.5 or SDXL based on your hardware
4. **Generate**: Create art with intelligent fusion of all inputs
5. **Review & Annotate**: Rate and organize results in gallery
6. **Save & Export**: Create presets and export complete bundles
---
## πŸ”§ **Advanced Features**
### **🎡 Audio Processing Pipeline**
```python
# Complete audio analysis chain:
1. Upload audio file (.wav/.mp3)
2. Librosa feature extraction (tempo, energy, ZCR)
3. Whisper transcription (base model)
4. Intelligent tag generation
5. Prompt enhancement with audio context
```
### **πŸ“Š Data Integration System**
```python
# Dual data processing modes:
1. CSV Upload: Pandas analysis β†’ statistical summary β†’ visualization
2. Formula Mode: NumPy evaluation β†’ pattern generation β†’ plotting
3. Poetic summarization for prompt enhancement
```
### **πŸ–ΌοΈ Advanced Reference System**
```python
# Role-based reference processing:
Style References: Used for img2img artistic influence
Structure References: Used for ControlNet composition control
Live Previews: Real-time Canny/Depth map generation
Hybrid Modes: CN+I2I with intelligent fallback strategies
```
### **⚑ Performance Optimization**
```python
# Multi-level optimization system:
1. xFormers: Memory-efficient attention (if available)
2. Attention Slicing: Reduce memory usage
3. VAE Slicing/Tiling: Handle large images efficiently
4. OOM Recovery: Progressive fallback (size β†’ steps β†’ CPU)
5. VRAM Monitoring: Real-time usage tracking
```
### **πŸ›‘οΈ Reliability Features**
```python
# Production-grade error handling:
1. Graceful Degradation: Features work even when components unavailable
2. Intelligent Fallbacks: CN+I2I β†’ two-pass approach when needed
3. OOM Recovery: Automatic retry with reduced parameters
4. Error Classification: Specific handling for different error types
```
---
## πŸ“Š **Performance Benchmarks**
### **Generation Speed (Approximate)**
```
SD 1.5 (512x512, 20 steps):
RTX 4090: ~15-25 seconds
RTX 3080: ~25-35 seconds
RTX 2080: ~45-60 seconds
CPU: ~5-10 minutes
SDXL (1024x1024, 20 steps):
RTX 4090: ~30-45 seconds
RTX 3080: ~60-90 seconds
RTX 2080: ~2-3 minutes (with optimizations)
CPU: ~15-30 minutes
```
### **Memory Requirements**
```
SD 1.5 Base: ~3.5GB VRAM
SD 1.5 + LoRA: ~3.7GB VRAM
SD 1.5 + Upscaler: ~5.5GB VRAM
SDXL Base: ~6.5GB VRAM
SDXL + LoRA: ~7.0GB VRAM
SDXL + Upscaler: ~9.0GB VRAM
```
---
## 🎯 **Best Practices**
### **πŸ“ Optimal Workflow**
1. **Start Simple**: Begin with text-only generation to test setup
2. **Add Gradually**: Introduce multimodal inputs one at a time
3. **Monitor VRAM**: Keep usage below 80% for stability
4. **Use Presets**: Save successful configurations for reuse
5. **Export Regularly**: Create bundles of your best work
### **πŸ€– Model Selection**
1. **SD 1.5 for Speed**: Faster generation, lower VRAM, wide compatibility
2. **SDXL for Quality**: Higher resolution, better detail, requires more VRAM
3. **Match Hardware**: Choose model based on available VRAM
4. **Test First**: Verify model works with your specific use case
### **πŸ–ΌοΈ Reference Usage**
1. **Style References**: Use 2-4 images for artistic influence
2. **Structure Reference**: Use 1 clear image for composition control
3. **Quality Matters**: Higher quality references produce better results
4. **Role Clarity**: Clearly separate style vs structure purposes
### **⚑ Performance Tuning**
1. **Enable xFormers**: Significant speed improvement if available
2. **Use Attention Slicing**: Always enable for memory efficiency
3. **Monitor Usage**: Watch VRAM meter and adjust accordingly
4. **Batch Wisely**: Use smaller batches on limited hardware
---
## πŸŽ‰ **Phase 3 Complete Achievement**
**The Phase 3 Final Dashboard represents the complete realization of the CompI vision: a unified, production-grade, multimodal AI art generation platform.**
### **βœ… All Phase 3 Components Integrated:**
- **βœ… Phase 3.A**: Multimodal input processing
- **βœ… Phase 3.B**: True fusion engine with real processing
- **βœ… Phase 3.C**: Advanced references with role assignment
- **βœ… Phase 3.D**: Professional workflow management
- **βœ… Phase 3.E**: Performance optimization and model management
### **πŸš€ Key Benefits:**
- **Single Interface**: All CompI features in one unified dashboard
- **Professional Workflow**: From input to export in one seamless process
- **Production Ready**: Robust error handling and performance optimization
- **Universal Compatibility**: Works across different hardware configurations
- **Complete Integration**: All phases work together harmoniously
**CompI Phase 3 is now complete - the ultimate multimodal AI art generation platform!** 🎨✨