|
|
|
import os |
|
import shutil |
|
import glob |
|
import base64 |
|
import streamlit as st |
|
import pandas as pd |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
import time |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
import zipfile |
|
|
|
|
|
st.set_page_config( |
|
page_title="SFT Model Builder π", |
|
page_icon="π€", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
) |
|
|
|
|
|
class ModelMeta(type): |
|
def __new__(cls, name, bases, attrs): |
|
attrs['registry'] = {} |
|
return super().__new__(cls, name, bases, attrs) |
|
|
|
|
|
@dataclass |
|
class ModelConfig(metaclass=ModelMeta): |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
|
|
def __init_subclass__(cls): |
|
ModelConfig.registry[cls.__name__] = cls |
|
|
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
|
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_length=128): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
input_text = f"{prompt} {response}" |
|
encoding = self.tokenizer( |
|
input_text, |
|
max_length=self.max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt" |
|
) |
|
return { |
|
"input_ids": encoding["input_ids"].squeeze(), |
|
"attention_mask": encoding["attention_mask"].squeeze(), |
|
"labels": encoding["input_ids"].squeeze() |
|
} |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.sft_data = None |
|
|
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
"""Load a model from a path with an optional config""" |
|
with st.spinner("Loading model... β³"): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
st.success("Model loaded! β
") |
|
return self |
|
|
|
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): |
|
"""Perform Supervised Fine-Tuning with CSV data""" |
|
self.sft_data = [] |
|
with open(csv_path, "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
|
|
dataset = SFTDataset(self.sft_data, self.tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) |
|
|
|
self.model.train() |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ"): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
input_ids = batch["input_ids"].to(self.model.device) |
|
attention_mask = batch["attention_mask"].to(self.model.device) |
|
labels = batch["labels"].to(self.model.device) |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success("SFT Fine-tuning completed! π") |
|
return self |
|
|
|
def save_model(self, path: str): |
|
"""Save the fine-tuned model""" |
|
with st.spinner("Saving model... πΎ"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}! β
") |
|
|
|
def evaluate(self, prompt: str): |
|
"""Evaluate the model with a prompt""" |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=50) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
def get_download_link(file_path, mime_type="text/plain", label="Download"): |
|
"""Generate a download link for a file.""" |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
"""Create a zip file from a directory.""" |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
arcname = os.path.relpath(file_path, os.path.dirname(directory_path)) |
|
zipf.write(file_path, arcname) |
|
|
|
def get_model_files(): |
|
"""List all saved model directories.""" |
|
return [d for d in glob.glob("models/*") if os.path.isdir(d)] |
|
|
|
|
|
st.title("SFT Model Builder π€π") |
|
|
|
|
|
st.sidebar.header("Model Management ποΈ") |
|
model_dirs = get_model_files() |
|
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) |
|
|
|
if selected_model != "None" and st.sidebar.button("Load Model π"): |
|
if 'builder' not in st.session_state: |
|
st.session_state['builder'] = ModelBuilder() |
|
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general") |
|
st.session_state['builder'].load_model(selected_model, config) |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["Build New Model π±", "Fine-Tune Model π§", "Test Model π§ͺ"]) |
|
|
|
with tab1: |
|
st.header("Build New Model π±") |
|
base_model = st.selectbox( |
|
"Select Base Model", |
|
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"], |
|
help="Choose a small model to start with" |
|
) |
|
model_name = st.text_input("Model Name", f"new-model-{int(time.time())}") |
|
domain = st.text_input("Target Domain", "general") |
|
|
|
if st.button("Download Model β¬οΈ"): |
|
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) |
|
builder = ModelBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.success(f"Model downloaded and saved to {config.model_path}! π") |
|
st.rerun() |
|
|
|
with tab2: |
|
st.header("Fine-Tune Model π§") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please download or load a model first! β οΈ") |
|
else: |
|
|
|
if st.button("Generate Sample CSV π"): |
|
sample_data = [ |
|
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."}, |
|
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."}, |
|
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."}, |
|
] |
|
csv_path = f"sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) |
|
writer.writeheader() |
|
writer.writerows(sample_data) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True) |
|
st.success(f"Sample CSV generated as {csv_path}! β
") |
|
|
|
|
|
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") |
|
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"): |
|
csv_path = f"uploaded_sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" |
|
new_config = ModelConfig( |
|
name=new_model_name, |
|
base_model=st.session_state['builder'].config.base_model, |
|
size="small", |
|
domain=st.session_state['builder'].config.domain |
|
) |
|
st.session_state['builder'].config = new_config |
|
with st.status("Fine-tuning model... β³", expanded=True) as status: |
|
st.session_state['builder'].fine_tune_sft(csv_path) |
|
st.session_state['builder'].save_model(new_config.model_path) |
|
status.update(label="Fine-tuning completed! π", state="complete") |
|
|
|
|
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True) |
|
st.rerun() |
|
|
|
with tab3: |
|
st.header("Test Model π§ͺ") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please download or load a model first! β οΈ") |
|
else: |
|
if st.session_state['builder'].sft_data: |
|
st.write("Testing with SFT Data:") |
|
for item in st.session_state['builder'].sft_data[:3]: |
|
prompt = item["prompt"] |
|
expected = item["response"] |
|
generated = st.session_state['builder'].evaluate(prompt) |
|
st.write(f"**Prompt**: {prompt}") |
|
st.write(f"**Expected**: {expected}") |
|
st.write(f"**Generated**: {generated}") |
|
st.write("---") |
|
|
|
test_prompt = st.text_area("Enter Test Prompt", "What is AI?") |
|
if st.button("Run Test βΆοΈ"): |
|
result = st.session_state['builder'].evaluate(test_prompt) |
|
st.write(f"**Generated Response**: {result}") |
|
|
|
|
|
if st.button("Export Model Files π¦"): |
|
config = st.session_state['builder'].config |
|
app_code = f""" |
|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("{config.model_path}") |
|
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}") |
|
|
|
st.title("SFT Model Demo") |
|
input_text = st.text_area("Enter prompt") |
|
if st.button("Generate"): |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=50) |
|
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
""" |
|
with open("sft_app.py", "w") as f: |
|
f.write(app_code) |
|
reqs = "streamlit\ntorch\ntransformers\n" |
|
with open("sft_requirements.txt", "w") as f: |
|
f.write(reqs) |
|
readme = f""" |
|
# SFT Model Demo |
|
|
|
## How to run |
|
1. Install requirements: `pip install -r sft_requirements.txt` |
|
2. Run the app: `streamlit run sft_app.py` |
|
3. Input a prompt and click "Generate". |
|
""" |
|
with open("sft_README.md", "w") as f: |
|
f.write(readme) |
|
|
|
st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True) |
|
st.success("Model files exported! β
") |