awacke1's picture
Rename app.py to backup2.app.py
0893521 verified
#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional
import zipfile
# Page Configuration
st.set_page_config(
page_title="SFT Model Builder πŸš€",
page_icon="πŸ€–",
layout="wide",
initial_sidebar_state="expanded",
)
# Meta class for model configuration
class ModelMeta(type):
def __new__(cls, name, bases, attrs):
attrs['registry'] = {}
return super().__new__(cls, name, bases, attrs)
# Model Configuration Class
@dataclass
class ModelConfig(metaclass=ModelMeta):
name: str
base_model: str
size: str
domain: Optional[str] = None
def __init_subclass__(cls):
ModelConfig.registry[cls.__name__] = cls
@property
def model_path(self):
return f"models/{self.name}"
# Custom Dataset for SFT
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
input_text = f"{prompt} {response}"
encoding = self.tokenizer(
input_text,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return {
"input_ids": encoding["input_ids"].squeeze(),
"attention_mask": encoding["attention_mask"].squeeze(),
"labels": encoding["input_ids"].squeeze()
}
# Model Builder Class
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
"""Load a model from a path with an optional config"""
with st.spinner("Loading model... ⏳"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
st.success("Model loaded! βœ…")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
"""Perform Supervised Fine-Tuning with CSV data"""
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βš™οΈ"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(self.model.device)
attention_mask = batch["attention_mask"].to(self.model.device)
labels = batch["labels"].to(self.model.device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success("SFT Fine-tuning completed! πŸŽ‰")
return self
def save_model(self, path: str):
"""Save the fine-tuned model"""
with st.spinner("Saving model... πŸ’Ύ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! βœ…")
def evaluate(self, prompt: str):
"""Evaluate the model with a prompt"""
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Utility Functions
def get_download_link(file_path, mime_type="text/plain", label="Download"):
"""Generate a download link for a file."""
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} πŸ“₯</a>'
def zip_directory(directory_path, zip_path):
"""Create a zip file from a directory."""
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
zipf.write(file_path, arcname)
def get_model_files():
"""List all saved model directories."""
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
# Main App
st.title("SFT Model Builder πŸ€–πŸš€")
# Sidebar for Model Management
st.sidebar.header("Model Management πŸ—‚οΈ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
if selected_model != "None" and st.sidebar.button("Load Model πŸ“‚"):
if 'builder' not in st.session_state:
st.session_state['builder'] = ModelBuilder()
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
st.session_state['builder'].load_model(selected_model, config)
st.session_state['model_loaded'] = True
st.rerun()
# Main UI with Tabs
tab1, tab2, tab3 = st.tabs(["Build New Model 🌱", "Fine-Tune Model πŸ”§", "Test Model πŸ§ͺ"])
with tab1:
st.header("Build New Model 🌱")
base_model = st.selectbox(
"Select Base Model",
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"],
help="Choose a small model to start with"
)
model_name = st.text_input("Model Name", f"new-model-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model ⬇️"):
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
builder = ModelBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success(f"Model downloaded and saved to {config.model_path}! πŸŽ‰")
st.rerun()
with tab2:
st.header("Fine-Tune Model πŸ”§")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please download or load a model first! ⚠️")
else:
# Generate Sample CSV
if st.button("Generate Sample CSV πŸ“"):
sample_data = [
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
]
csv_path = f"sft_data_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
writer.writeheader()
writer.writerows(sample_data)
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
st.success(f"Sample CSV generated as {csv_path}! βœ…")
# Upload CSV and Fine-Tune
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV πŸ”„"):
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(
name=new_model_name,
base_model=st.session_state['builder'].config.base_model,
size="small",
domain=st.session_state['builder'].config.domain
)
st.session_state['builder'].config = new_config
with st.status("Fine-tuning model... ⏳", expanded=True) as status:
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
status.update(label="Fine-tuning completed! πŸŽ‰", state="complete")
# Create a zip file of the model directory
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True)
st.rerun()
with tab3:
st.header("Test Model πŸ§ͺ")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please download or load a model first! ⚠️")
else:
if st.session_state['builder'].sft_data:
st.write("Testing with SFT Data:")
for item in st.session_state['builder'].sft_data[:3]:
prompt = item["prompt"]
expected = item["response"]
generated = st.session_state['builder'].evaluate(prompt)
st.write(f"**Prompt**: {prompt}")
st.write(f"**Expected**: {expected}")
st.write(f"**Generated**: {generated}")
st.write("---")
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
if st.button("Run Test ▢️"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Generated Response**: {result}")
# Export Model Files
if st.button("Export Model Files πŸ“¦"):
config = st.session_state['builder'].config
app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
st.title("SFT Model Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
with open("sft_app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\ntransformers\n"
with open("sft_requirements.txt", "w") as f:
f.write(reqs)
readme = f"""
# SFT Model Demo
## How to run
1. Install requirements: `pip install -r sft_requirements.txt`
2. Run the app: `streamlit run sft_app.py`
3. Input a prompt and click "Generate".
"""
with open("sft_README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
st.success("Model files exported! βœ…")