File size: 12,505 Bytes
bfae0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional
import zipfile
# Page Configuration
st.set_page_config(
page_title="SFT Model Builder π",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded",
)
# Meta class for model configuration
class ModelMeta(type):
def __new__(cls, name, bases, attrs):
attrs['registry'] = {}
return super().__new__(cls, name, bases, attrs)
# Model Configuration Class
@dataclass
class ModelConfig(metaclass=ModelMeta):
name: str
base_model: str
size: str
domain: Optional[str] = None
def __init_subclass__(cls):
ModelConfig.registry[cls.__name__] = cls
@property
def model_path(self):
return f"models/{self.name}"
# Custom Dataset for SFT
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
input_text = f"{prompt} {response}"
encoding = self.tokenizer(
input_text,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return {
"input_ids": encoding["input_ids"].squeeze(),
"attention_mask": encoding["attention_mask"].squeeze(),
"labels": encoding["input_ids"].squeeze()
}
# Model Builder Class
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
"""Load a model from a path with an optional config"""
with st.spinner("Loading model... β³"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
st.success("Model loaded! β
")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
"""Perform Supervised Fine-Tuning with CSV data"""
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(self.model.device)
attention_mask = batch["attention_mask"].to(self.model.device)
labels = batch["labels"].to(self.model.device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success("SFT Fine-tuning completed! π")
return self
def save_model(self, path: str):
"""Save the fine-tuned model"""
with st.spinner("Saving model... πΎ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! β
")
def evaluate(self, prompt: str):
"""Evaluate the model with a prompt"""
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Utility Functions
def get_download_link(file_path, mime_type="text/plain", label="Download"):
"""Generate a download link for a file."""
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯</a>'
def zip_directory(directory_path, zip_path):
"""Create a zip file from a directory."""
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
zipf.write(file_path, arcname)
def get_model_files():
"""List all saved model directories."""
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
# Main App
st.title("SFT Model Builder π€π")
# Sidebar for Model Management
st.sidebar.header("Model Management ποΈ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
if selected_model != "None" and st.sidebar.button("Load Model π"):
if 'builder' not in st.session_state:
st.session_state['builder'] = ModelBuilder()
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
st.session_state['builder'].load_model(selected_model, config)
st.session_state['model_loaded'] = True
st.rerun()
# Main UI with Tabs
tab1, tab2, tab3 = st.tabs(["Build New Model π±", "Fine-Tune Model π§", "Test Model π§ͺ"])
with tab1:
st.header("Build New Model π±")
base_model = st.selectbox(
"Select Base Model",
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"],
help="Choose a small model to start with"
)
model_name = st.text_input("Model Name", f"new-model-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model β¬οΈ"):
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
builder = ModelBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success(f"Model downloaded and saved to {config.model_path}! π")
st.rerun()
with tab2:
st.header("Fine-Tune Model π§")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please download or load a model first! β οΈ")
else:
# Generate Sample CSV
if st.button("Generate Sample CSV π"):
sample_data = [
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
]
csv_path = f"sft_data_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
writer.writeheader()
writer.writerows(sample_data)
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
st.success(f"Sample CSV generated as {csv_path}! β
")
# Upload CSV and Fine-Tune
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(
name=new_model_name,
base_model=st.session_state['builder'].config.base_model,
size="small",
domain=st.session_state['builder'].config.domain
)
st.session_state['builder'].config = new_config
with st.status("Fine-tuning model... β³", expanded=True) as status:
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
status.update(label="Fine-tuning completed! π", state="complete")
# Create a zip file of the model directory
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True)
st.rerun()
with tab3:
st.header("Test Model π§ͺ")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please download or load a model first! β οΈ")
else:
if st.session_state['builder'].sft_data:
st.write("Testing with SFT Data:")
for item in st.session_state['builder'].sft_data[:3]:
prompt = item["prompt"]
expected = item["response"]
generated = st.session_state['builder'].evaluate(prompt)
st.write(f"**Prompt**: {prompt}")
st.write(f"**Expected**: {expected}")
st.write(f"**Generated**: {generated}")
st.write("---")
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
if st.button("Run Test βΆοΈ"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Generated Response**: {result}")
# Export Model Files
if st.button("Export Model Files π¦"):
config = st.session_state['builder'].config
app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
st.title("SFT Model Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
with open("sft_app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\ntransformers\n"
with open("sft_requirements.txt", "w") as f:
f.write(reqs)
readme = f"""
# SFT Model Demo
## How to run
1. Install requirements: `pip install -r sft_requirements.txt`
2. Run the app: `streamlit run sft_app.py`
3. Input a prompt and click "Generate".
"""
with open("sft_README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
st.success("Model files exported! β
") |