Update README.md
Browse files
README.md
CHANGED
@@ -11,4 +11,787 @@ license: mit
|
|
11 |
short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
|
12 |
---
|
13 |
|
14 |
+
LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners β Arxiv Link)
|
15 |
+
Composable Sparse Fine-Tuning for Cross-Lingual Transfer β Arxiv Link)
|
16 |
+
Efficient Fine-Tuning of Compressed Language Models with Learners β Arxiv Link)
|
17 |
+
Task Adaptive Parameter Sharing for Multi-Task Learning β Arxiv Link)
|
18 |
+
RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture β Arxiv Link)
|
19 |
+
Scaling Sparse Fine-Tuning to Large Language Models β Arxiv Link)
|
20 |
+
Exploring and Evaluating Personalized Models for Code Generation β Arxiv Link)
|
21 |
+
UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory β Arxiv Link)
|
22 |
+
Weaver: Foundation Models for Creative Writing β Arxiv Link)
|
23 |
+
PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models β Arxiv Link)
|
24 |
+
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning β Arxiv Link)
|
25 |
+
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning β Arxiv Link)
|
26 |
+
ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization β Arxiv Link)
|
27 |
+
Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models β Arxiv Link)
|
28 |
+
ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models β Arxiv Link)
|
29 |
+
LeTI: Learning to Generate from Textual Interactions β Arxiv Link)
|
30 |
+
Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks β Arxiv Link)
|
31 |
+
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models β Arxiv Link)
|
32 |
+
SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning β Arxiv Link)
|
33 |
+
HyperTuning: Toward Adapting Large Language Models without Back-propagation β Arxiv Link)
|
34 |
+
|
35 |
+
With torch, transformers, and specialized fine tuning of small models we can build to specification of input dataset and easily create RAG agents with fine tuned models using duckduckgo and smolagents. Show state of art SFT for agentic RAG to help manage models and gain ROI.
|
36 |
+
|
37 |
+
# Detailed Research Paper Summary
|
38 |
+
|
39 |
+
|
40 |
+
## π [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners](https://arxiv.org/abs/2110.06274)
|
41 |
+
|
42 |
+
**Authors:** Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
|
43 |
+
**Date:** ### 18 May 2022
|
44 |
+
**Word Count (Title):** 8 | **Word Count (Summary):** 219
|
45 |
+
|
46 |
+
**Links:** [Abstract](https://arxiv.org/abs/2110.06274)) | [PDF](https://arxiv.org/pdf/2110.06274).pdf)
|
47 |
+
|
48 |
+
**High Info Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
|
49 |
+
**ROUGE Score:** 6.85%
|
50 |
+
|
51 |
+
### π€ TTF Read Aloud
|
52 |
+
- **Title:** [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners](https://arxiv.org/abs/2110.06274)
|
53 |
+
- **Key Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
|
54 |
+
- **ROUGE:** 6.85%
|
55 |
+
|
56 |
+
#### Mermaid Graph of Key Concepts
|
57 |
+
```mermaid
|
58 |
+
flowchart TD
|
59 |
+
T1["list"] --> T2["is"]
|
60 |
+
T2["is"] --> T3["self-training"]
|
61 |
+
T3["self-training"] --> T4["fine-tuning"]
|
62 |
+
T4["fine-tuning"] --> T5["parameters"]
|
63 |
+
T5["parameters"] --> T6["we"]
|
64 |
+
T6["we"] --> T7["few-shot"]
|
65 |
+
T7["few-shot"] --> T8["learning"]
|
66 |
+
T8["learning"] --> T9["over"]
|
67 |
+
T9["over"] --> T10["that"]
|
68 |
+
T10["that"] --> T11["prompt-based"]
|
69 |
+
T11["prompt-based"] --> T12["fn"]
|
70 |
+
T12["fn"] --> T13["use"]
|
71 |
+
T13["use"] --> T14["as"]
|
72 |
+
T14["as"] --> T15["model"]
|
73 |
+
```
|
74 |
+
|
75 |
+
---
|
76 |
+
|
77 |
+
|
78 |
+
## π [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
|
79 |
+
|
80 |
+
**Authors:** Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, Ivan Vuli\'c
|
81 |
+
**Date:** ### 09 Feb 2023
|
82 |
+
**Word Count (Title):** 6 | **Word Count (Summary):** 218
|
83 |
+
|
84 |
+
**Links:** [Abstract](https://arxiv.org/abs/2110.07560)) | [PDF](https://arxiv.org/pdf/2110.07560).pdf)
|
85 |
+
|
86 |
+
**High Info Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
|
87 |
+
**ROUGE Score:** 6.88%
|
88 |
+
|
89 |
+
### π€ TTF Read Aloud
|
90 |
+
- **Title:** [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
|
91 |
+
- **Key Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
|
92 |
+
- **ROUGE:** 6.88%
|
93 |
+
|
94 |
+
#### Mermaid Graph of Key Concepts
|
95 |
+
```mermaid
|
96 |
+
flowchart TD
|
97 |
+
T1["fine-tuning"] --> T2["model"]
|
98 |
+
T2["model"] --> T3["adapters"]
|
99 |
+
T3["adapters"] --> T4["language"]
|
100 |
+
T4["language"] --> T5["we"]
|
101 |
+
T5["we"] --> T6["masks"]
|
102 |
+
T6["masks"] --> T7["sparse"]
|
103 |
+
T7["sparse"] --> T8["be"]
|
104 |
+
T8["be"] --> T9["both"]
|
105 |
+
T9["both"] --> T10["in a"]
|
106 |
+
T10["in a"] --> T11["parameters"]
|
107 |
+
T11["parameters"] --> T12["large"]
|
108 |
+
T12["large"] --> T13["pretrained"]
|
109 |
+
T13["pretrained"] --> T14["transfer"]
|
110 |
+
T14["transfer"] --> T15["prevent"]
|
111 |
+
```
|
112 |
+
|
113 |
+
---
|
114 |
+
|
115 |
+
|
116 |
+
## π [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
|
117 |
+
|
118 |
+
**Authors:** Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J. Clark, Brett H. Meyer, Warren J. Gross
|
119 |
+
**Date:** ### 03 Aug 2022
|
120 |
+
**Word Count (Title):** 8 | **Word Count (Summary):** 131
|
121 |
+
|
122 |
+
**Links:** [Abstract](https://arxiv.org/abs/2208.02070)) | [PDF](https://arxiv.org/pdf/2208.02070).pdf)
|
123 |
+
|
124 |
+
**High Info Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
|
125 |
+
**ROUGE Score:** 11.45%
|
126 |
+
|
127 |
+
### π€ TTF Read Aloud
|
128 |
+
- **Title:** [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
|
129 |
+
- **Key Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
|
130 |
+
- **ROUGE:** 11.45%
|
131 |
+
|
132 |
+
#### Mermaid Graph of Key Concepts
|
133 |
+
```mermaid
|
134 |
+
flowchart TD
|
135 |
+
T1["fine-tuning"] --> T2["training"]
|
136 |
+
T2["training"] --> T3["learners"]
|
137 |
+
T3["learners"] --> T4["models"]
|
138 |
+
T4["models"] --> T5["works"]
|
139 |
+
T5["works"] --> T6["learner"]
|
140 |
+
T6["learner"] --> T7["modules"]
|
141 |
+
T7["modules"] --> T8["methods"]
|
142 |
+
T8["methods"] --> T9["that"]
|
143 |
+
T9["that"] --> T10["convergence"]
|
144 |
+
T10["convergence"] --> T11["resource"]
|
145 |
+
T11["resource"] --> T12["utilization"]
|
146 |
+
T12["utilization"] --> T13["by"]
|
147 |
+
T13["by"] --> T14["parameters"]
|
148 |
+
T14["parameters"] --> T15["learner modules"]
|
149 |
+
```
|
150 |
+
|
151 |
+
---
|
152 |
+
|
153 |
+
|
154 |
+
## π [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
|
155 |
+
|
156 |
+
**Authors:** Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul Bhotika, Stefano Soatto
|
157 |
+
**Date:** ### 30 Mar 2022
|
158 |
+
**Word Count (Title):** 7 | **Word Count (Summary):** 183
|
159 |
+
|
160 |
+
**Links:** [Abstract](https://arxiv.org/abs/2203.16708)) | [PDF](https://arxiv.org/pdf/2203.16708).pdf)
|
161 |
+
|
162 |
+
**High Info Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
|
163 |
+
**ROUGE Score:** 8.2%
|
164 |
+
|
165 |
+
### π€ TTF Read Aloud
|
166 |
+
- **Title:** [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
|
167 |
+
- **Key Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
|
168 |
+
- **ROUGE:** 8.2%
|
169 |
+
|
170 |
+
#### Mermaid Graph of Key Concepts
|
171 |
+
```mermaid
|
172 |
+
flowchart TD
|
173 |
+
T1["tasks"] --> T2["taps"]
|
174 |
+
T2["taps"] --> T3["model"]
|
175 |
+
T3["model"] --> T4["downstream"]
|
176 |
+
T4["downstream"] --> T5["task"]
|
177 |
+
T5["task"] --> T6["base"]
|
178 |
+
T6["base"] --> T7["task-specific"]
|
179 |
+
T7["task-specific"] --> T8["layers"]
|
180 |
+
T8["layers"] --> T9["while"]
|
181 |
+
T9["while"] --> T10["downstream tasks"]
|
182 |
+
T10["downstream tasks"] --> T11["base model"]
|
183 |
+
T11["base model"] --> T12["models"]
|
184 |
+
T12["models"] --> T13["learning"]
|
185 |
+
T13["learning"] --> T14["fine-tuning"]
|
186 |
+
T14["fine-tuning"] --> T15["is"]
|
187 |
+
```
|
188 |
+
|
189 |
+
---
|
190 |
+
|
191 |
+
|
192 |
+
## π [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture](https://arxiv.org/abs/2401.08406)
|
193 |
+
|
194 |
+
**Authors:** Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha, Roberto de M. Estev\~ao Filho, Todd Hendry, Daniel Holstein, Jennifer Marsman, Nick Mecklenburg, Sara Malvar, Leonardo O. Nunes, Rafael Padilha, Morris Sharp, Bruno Silva, Swati Sharma, Vijay Aski, Ranveer Chandra
|
195 |
+
**Date:** ### 30 Jan 2024
|
196 |
+
**Word Count (Title):** 11 | **Word Count (Summary):** 281
|
197 |
+
|
198 |
+
**Links:** [Abstract](https://arxiv.org/abs/2401.08406)) | [PDF](https://arxiv.org/pdf/2401.08406).pdf)
|
199 |
+
|
200 |
+
**High Info Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
|
201 |
+
**ROUGE Score:** 5.34%
|
202 |
+
|
203 |
+
### π€ TTF Read Aloud
|
204 |
+
- **Title:** [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture](https://arxiv.org/abs/2401.08406)
|
205 |
+
- **Key Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
|
206 |
+
- **ROUGE:** 5.34%
|
207 |
+
|
208 |
+
#### Mermaid Graph of Key Concepts
|
209 |
+
```mermaid
|
210 |
+
flowchart TD
|
211 |
+
T1["fine-tuning"] --> T2["we"]
|
212 |
+
T2["we"] --> T3["rag"]
|
213 |
+
T3["rag"] --> T4["llms"]
|
214 |
+
T4["llms"] --> T5["pipeline"]
|
215 |
+
T5["pipeline"] --> T6["p"]
|
216 |
+
T6["p"] --> T7["rag and"]
|
217 |
+
T7["rag and"] --> T8["are"]
|
218 |
+
T8["are"] --> T9["knowledge"]
|
219 |
+
T9["knowledge"] --> T10["model"]
|
220 |
+
T10["model"] --> T11["our"]
|
221 |
+
T11["our"] --> T12["from"]
|
222 |
+
T12["from"] --> T13["results"]
|
223 |
+
T13["results"] --> T14["and fine-tuning"]
|
224 |
+
T14["and fine-tuning"] --> T15["which"]
|
225 |
+
```
|
226 |
+
|
227 |
+
---
|
228 |
+
|
229 |
+
|
230 |
+
## π [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
|
231 |
+
|
232 |
+
**Authors:** Alan Ansell and Ivan Vuli\'c and Hannah Sterz and Anna Korhonen and Edoardo M. Ponti
|
233 |
+
**Date:** ### 02 Feb 2024
|
234 |
+
**Word Count (Title):** 7 | **Word Count (Summary):** 219
|
235 |
+
|
236 |
+
**Links:** [Abstract](https://arxiv.org/abs/2401.16405)) | [PDF](https://arxiv.org/pdf/2401.16405).pdf)
|
237 |
+
|
238 |
+
**High Info Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
|
239 |
+
**ROUGE Score:** 6.85%
|
240 |
+
|
241 |
+
### π€ TTF Read Aloud
|
242 |
+
- **Title:** [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
|
243 |
+
- **Key Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
|
244 |
+
- **ROUGE:** 6.85%
|
245 |
+
|
246 |
+
#### Mermaid Graph of Key Concepts
|
247 |
+
```mermaid
|
248 |
+
flowchart TD
|
249 |
+
T1["we"] --> T2["their"]
|
250 |
+
T2["their"] --> T3["llms"]
|
251 |
+
T3["llms"] --> T4["fine-tuning"]
|
252 |
+
T4["fine-tuning"] --> T5["spiel"]
|
253 |
+
T5["spiel"] --> T6["parameters"]
|
254 |
+
T6["parameters"] --> T7["sparse"]
|
255 |
+
T7["sparse"] --> T8["terms"]
|
256 |
+
T8["terms"] --> T9["indices"]
|
257 |
+
T9["indices"] --> T10["deltas"]
|
258 |
+
T10["deltas"] --> T11["sparse fine-tuning"]
|
259 |
+
T11["sparse fine-tuning"] --> T12["in terms"]
|
260 |
+
T12["in terms"] --> T13["terms of"]
|
261 |
+
T13["terms of"] --> T14["parameter-efficient"]
|
262 |
+
T14["parameter-efficient"] --> T15["methods"]
|
263 |
+
```
|
264 |
+
|
265 |
+
---
|
266 |
+
|
267 |
+
|
268 |
+
## π [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
|
269 |
+
|
270 |
+
**Authors:** Andrei Zlotchevski, Dawn Drain, Alexey Svyatkovskiy, Colin Clement, Neel Sundaresan, Michele Tufano
|
271 |
+
**Date:** ### 20 Sep 2022
|
272 |
+
**Word Count (Title):** 8 | **Word Count (Summary):** 226
|
273 |
+
|
274 |
+
**Links:** [Abstract](https://arxiv.org/abs/2208.13928)) | [PDF](https://arxiv.org/pdf/2208.13928).pdf)
|
275 |
+
|
276 |
+
**High Info Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
|
277 |
+
**ROUGE Score:** 6.64%
|
278 |
+
|
279 |
+
### π€ TTF Read Aloud
|
280 |
+
- **Title:** [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
|
281 |
+
- **Key Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
|
282 |
+
- **ROUGE:** 6.64%
|
283 |
+
|
284 |
+
#### Mermaid Graph of Key Concepts
|
285 |
+
```mermaid
|
286 |
+
flowchart TD
|
287 |
+
T1["model"] --> T2["fine-tuning"]
|
288 |
+
T2["fine-tuning"] --> T3["we"]
|
289 |
+
T3["we"] --> T4["which"]
|
290 |
+
T4["which"] --> T5["are"]
|
291 |
+
T5["are"] --> T6["code"]
|
292 |
+
T6["code"] --> T7["evaluate"]
|
293 |
+
T7["evaluate"] --> T8["parameters"]
|
294 |
+
T8["parameters"] --> T9["large"]
|
295 |
+
T9["large"] --> T10["transformer"]
|
296 |
+
T10["transformer"] --> T11["modeling"]
|
297 |
+
T11["modeling"] --> T12["learning"]
|
298 |
+
T12["learning"] --> T13["token"]
|
299 |
+
T13["token"] --> T14["generalization"]
|
300 |
+
T14["generalization"] --> T15["personalization"]
|
301 |
+
```
|
302 |
+
|
303 |
+
---
|
304 |
+
|
305 |
+
|
306 |
+
## π [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory](https://arxiv.org/abs/2308.14316)
|
307 |
+
|
308 |
+
**Authors:** Haiwen Diao, Bo Wan, Ying Zhang, Xu Jia, Huchuan Lu, Long Chen
|
309 |
+
**Date:** ### 28 Aug 2023
|
310 |
+
**Word Count (Title):** 12 | **Word Count (Summary):** 225
|
311 |
+
|
312 |
+
**Links:** [Abstract](https://arxiv.org/abs/2308.14316)) | [PDF](https://arxiv.org/pdf/2308.14316).pdf)
|
313 |
+
|
314 |
+
**High Info Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
|
315 |
+
**ROUGE Score:** 6.67%
|
316 |
+
|
317 |
+
### π€ TTF Read Aloud
|
318 |
+
- **Title:** [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory](https://arxiv.org/abs/2308.14316)
|
319 |
+
- **Key Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
|
320 |
+
- **ROUGE:** 6.67%
|
321 |
+
|
322 |
+
#### Mermaid Graph of Key Concepts
|
323 |
+
```mermaid
|
324 |
+
flowchart TD
|
325 |
+
T1["petl"] --> T2["unipt"]
|
326 |
+
T2["unipt"] --> T3["pre-trained"]
|
327 |
+
T3["pre-trained"] --> T4["methods"]
|
328 |
+
T4["methods"] --> T5["we"]
|
329 |
+
T5["we"] --> T6["parallel"]
|
330 |
+
T6["parallel"] --> T7["that"]
|
331 |
+
T7["that"] --> T8["petl methods"]
|
332 |
+
T8["petl methods"] --> T9["achieve"]
|
333 |
+
T9["achieve"] --> T10["performance"]
|
334 |
+
T10["performance"] --> T11["tasks"]
|
335 |
+
T11["tasks"] --> T12["parameters"]
|
336 |
+
T12["parameters"] --> T13["networks"]
|
337 |
+
T13["networks"] --> T14["is"]
|
338 |
+
T14["is"] --> T15["transfer"]
|
339 |
+
```
|
340 |
+
|
341 |
+
---
|
342 |
+
|
343 |
+
|
344 |
+
## π [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
|
345 |
+
|
346 |
+
**Authors:** Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei Gao, Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu, Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng, Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao, Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu Tayier, Zhenyu Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang, Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, Yuchen Eleanor Jiang, and Wangchunshu Zhou
|
347 |
+
**Date:** ### 30 Jan 2024
|
348 |
+
**Word Count (Title):** 6 | **Word Count (Summary):** 237
|
349 |
+
|
350 |
+
**Links:** [Abstract](https://arxiv.org/abs/2401.17268)) | [PDF](https://arxiv.org/pdf/2401.17268).pdf)
|
351 |
+
|
352 |
+
**High Info Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
|
353 |
+
**ROUGE Score:** 6.33%
|
354 |
+
|
355 |
+
### π€ TTF Read Aloud
|
356 |
+
- **Title:** [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
|
357 |
+
- **Key Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
|
358 |
+
- **ROUGE:** 6.33%
|
359 |
+
|
360 |
+
#### Mermaid Graph of Key Concepts
|
361 |
+
```mermaid
|
362 |
+
flowchart TD
|
363 |
+
T1["weaver"] --> T2["writing"]
|
364 |
+
T2["writing"] --> T3["llms"]
|
365 |
+
T3["llms"] --> T4["models"]
|
366 |
+
T4["models"] --> T5["we"]
|
367 |
+
T5["we"] --> T6["our"]
|
368 |
+
T6["our"] --> T7["family"]
|
369 |
+
T7["family"] --> T8["large"]
|
370 |
+
T8["large"] --> T9["language"]
|
371 |
+
T9["language"] --> T10["content"]
|
372 |
+
T10["content"] --> T11["creation"]
|
373 |
+
T11["creation"] --> T12["carefully"]
|
374 |
+
T12["carefully"] --> T13["improving"]
|
375 |
+
T13["improving"] --> T14["capabilities"]
|
376 |
+
T14["capabilities"] --> T15["professional"]
|
377 |
+
```
|
378 |
+
|
379 |
+
---
|
380 |
+
|
381 |
+
|
382 |
+
## π [PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models](https://arxiv.org/abs/2204.01172)
|
383 |
+
|
384 |
+
**Authors:** Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James Henderson, Marzieh Saeidi, Lambert Mathias, Veselin Stoyanov, and Majid Yazdani
|
385 |
+
**Date:** ### 26 Apr 2022
|
386 |
+
**Word Count (Title):** 9 | **Word Count (Summary):** 184
|
387 |
+
|
388 |
+
**Links:** [Abstract](https://arxiv.org/abs/2204.01172)) | [PDF](https://arxiv.org/pdf/2204.01172).pdf)
|
389 |
+
|
390 |
+
**High Info Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
|
391 |
+
**ROUGE Score:** 8.15%
|
392 |
+
|
393 |
+
### π€ TTF Read Aloud
|
394 |
+
- **Title:** [PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models](https://arxiv.org/abs/2204.01172)
|
395 |
+
- **Key Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
|
396 |
+
- **ROUGE:** 8.15%
|
397 |
+
|
398 |
+
#### Mermaid Graph of Key Concepts
|
399 |
+
```mermaid
|
400 |
+
flowchart TD
|
401 |
+
T1["few-shot"] --> T2["fine-tuning"]
|
402 |
+
T2["fine-tuning"] --> T3["that"]
|
403 |
+
T3["that"] --> T4["perfect"]
|
404 |
+
T4["perfect"] --> T5["we"]
|
405 |
+
T5["we"] --> T6["which"]
|
406 |
+
T6["which"] --> T7["methods"]
|
407 |
+
T7["methods"] --> T8["plms"]
|
408 |
+
T8["plms"] --> T9["engineered"]
|
409 |
+
T9["engineered"] --> T10["prompts"]
|
410 |
+
T10["prompts"] --> T11["verbalizers"]
|
411 |
+
T11["verbalizers"] --> T12["new"]
|
412 |
+
T12["new"] --> T13["task"]
|
413 |
+
T13["task"] --> T14["can"]
|
414 |
+
T14["can"] --> T15["simple"]
|
415 |
+
```
|
416 |
+
|
417 |
+
---
|
418 |
+
|
419 |
+
|
420 |
+
## π [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
|
421 |
+
|
422 |
+
**Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
|
423 |
+
**Date:** ### 02 Nov 2022
|
424 |
+
**Word Count (Title):** 6 | **Word Count (Summary):** 191
|
425 |
+
|
426 |
+
**Links:** [Abstract](https://arxiv.org/abs/2205.12410)) | [PDF](https://arxiv.org/pdf/2205.12410).pdf)
|
427 |
+
|
428 |
+
**High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
|
429 |
+
**ROUGE Score:** 7.85%
|
430 |
+
|
431 |
+
### π€ TTF Read Aloud
|
432 |
+
- **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
|
433 |
+
- **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
|
434 |
+
- **ROUGE:** 7.85%
|
435 |
+
|
436 |
+
#### Mermaid Graph of Key Concepts
|
437 |
+
```mermaid
|
438 |
+
flowchart TD
|
439 |
+
T1["fine-tuning"] --> T2["peft"]
|
440 |
+
T2["peft"] --> T3["plm"]
|
441 |
+
T3["plm"] --> T4["adamix"]
|
442 |
+
T4["adamix"] --> T5["tasks"]
|
443 |
+
T5["tasks"] --> T6["parameters"]
|
444 |
+
T6["parameters"] --> T7["we"]
|
445 |
+
T7["we"] --> T8["method"]
|
446 |
+
T8["method"] --> T9["that"]
|
447 |
+
T9["that"] --> T10["mixture"]
|
448 |
+
T10["mixture"] --> T11["the plm"]
|
449 |
+
T11["the plm"] --> T12["peft method"]
|
450 |
+
T12["peft method"] --> T13["a mixture"]
|
451 |
+
T13["a mixture"] --> T14["mixture of"]
|
452 |
+
T14["mixture of"] --> T15["large"]
|
453 |
+
```
|
454 |
+
|
455 |
+
---
|
456 |
+
|
457 |
+
|
458 |
+
## π [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
|
459 |
+
|
460 |
+
**Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
|
461 |
+
**Date:** ### 02 Nov 2022
|
462 |
+
**Word Count (Title):** 6 | **Word Count (Summary):** 191
|
463 |
+
|
464 |
+
**Links:** [Abstract](https://arxiv.org/abs/2210.17451)) | [PDF](https://arxiv.org/pdf/2210.17451).pdf)
|
465 |
+
|
466 |
+
**High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
|
467 |
+
**ROUGE Score:** 7.85%
|
468 |
+
|
469 |
+
### π€ TTF Read Aloud
|
470 |
+
- **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
|
471 |
+
- **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
|
472 |
+
- **ROUGE:** 7.85%
|
473 |
+
|
474 |
+
#### Mermaid Graph of Key Concepts
|
475 |
+
```mermaid
|
476 |
+
flowchart TD
|
477 |
+
T1["fine-tuning"] --> T2["peft"]
|
478 |
+
T2["peft"] --> T3["plm"]
|
479 |
+
T3["plm"] --> T4["adamix"]
|
480 |
+
T4["adamix"] --> T5["tasks"]
|
481 |
+
T5["tasks"] --> T6["parameters"]
|
482 |
+
T6["parameters"] --> T7["we"]
|
483 |
+
T7["we"] --> T8["method"]
|
484 |
+
T8["method"] --> T9["that"]
|
485 |
+
T9["that"] --> T10["mixture"]
|
486 |
+
T10["mixture"] --> T11["the plm"]
|
487 |
+
T11["the plm"] --> T12["peft method"]
|
488 |
+
T12["peft method"] --> T13["a mixture"]
|
489 |
+
T13["a mixture"] --> T14["mixture of"]
|
490 |
+
T14["mixture of"] --> T15["large"]
|
491 |
+
```
|
492 |
+
|
493 |
+
---
|
494 |
+
|
495 |
+
|
496 |
+
## π [ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
|
497 |
+
|
498 |
+
**Authors:** Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal
|
499 |
+
**Date:** ### 22 Nov 2023
|
500 |
+
**Word Count (Title):** 11 | **Word Count (Summary):** 247
|
501 |
+
|
502 |
+
**Links:** [Abstract](https://arxiv.org/abs/2311.13171)) | [PDF](https://arxiv.org/pdf/2311.13171).pdf)
|
503 |
+
|
504 |
+
**High Info Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
|
505 |
+
**ROUGE Score:** 6.07%
|
506 |
+
|
507 |
+
### π€ TTF Read Aloud
|
508 |
+
- **Title:** [ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
|
509 |
+
- **Key Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
|
510 |
+
- **ROUGE:** 6.07%
|
511 |
+
|
512 |
+
#### Mermaid Graph of Key Concepts
|
513 |
+
```mermaid
|
514 |
+
flowchart TD
|
515 |
+
T1["compeft"] --> T2["models"]
|
516 |
+
T2["models"] --> T3["peft"]
|
517 |
+
T3["peft"] --> T4["we"]
|
518 |
+
T4["we"] --> T5["expert"]
|
519 |
+
T5["expert"] --> T6["that"]
|
520 |
+
T6["that"] --> T7["expert models"]
|
521 |
+
T7["expert models"] --> T8["it"]
|
522 |
+
T8["it"] --> T9["model"]
|
523 |
+
T9["model"] --> T10["generalization"]
|
524 |
+
T10["generalization"] --> T11["by"]
|
525 |
+
T11["by"] --> T12["size"]
|
526 |
+
T12["size"] --> T13["performance"]
|
527 |
+
T13["performance"] --> T14["show"]
|
528 |
+
T14["show"] --> T15["we show"]
|
529 |
+
```
|
530 |
+
|
531 |
+
---
|
532 |
+
|
533 |
+
|
534 |
+
## π [Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
|
535 |
+
|
536 |
+
**Authors:** Haoran Zhao and Jake Ryland Williams
|
537 |
+
**Date:** ### 18 Nov 2023
|
538 |
+
**Word Count (Title):** 16 | **Word Count (Summary):** 237
|
539 |
+
|
540 |
+
**Links:** [Abstract](https://arxiv.org/abs/2311.11012)) | [PDF](https://arxiv.org/pdf/2311.11012).pdf)
|
541 |
+
|
542 |
+
**High Info Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
|
543 |
+
**ROUGE Score:** 6.33%
|
544 |
+
|
545 |
+
### π€ TTF Read Aloud
|
546 |
+
- **Title:** [Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
|
547 |
+
- **Key Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
|
548 |
+
- **ROUGE:** 6.33%
|
549 |
+
|
550 |
+
#### Mermaid Graph of Key Concepts
|
551 |
+
```mermaid
|
552 |
+
flowchart TD
|
553 |
+
T1["bit-cipher"] --> T2["while"]
|
554 |
+
T2["while"] --> T3["word"]
|
555 |
+
T3["word"] --> T4["that"]
|
556 |
+
T4["that"] --> T5["we"]
|
557 |
+
T5["we"] --> T6["embeddings"]
|
558 |
+
T6["embeddings"] --> T7["efficiency"]
|
559 |
+
T7["efficiency"] --> T8["experiments"]
|
560 |
+
T8["experiments"] --> T9["training"]
|
561 |
+
T9["training"] --> T10["classic"]
|
562 |
+
T10["classic"] --> T11["from"]
|
563 |
+
T11["from"] --> T12["convergence"]
|
564 |
+
T12["convergence"] --> T13["glove"]
|
565 |
+
T13["glove"] --> T14["word2vec"]
|
566 |
+
T14["word2vec"] --> T15["process"]
|
567 |
+
```
|
568 |
+
|
569 |
+
---
|
570 |
+
|
571 |
+
|
572 |
+
## π [ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models](https://arxiv.org/abs/2305.18993)
|
573 |
+
|
574 |
+
**Authors:** Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang, Kang Li, Qicheng Lao
|
575 |
+
**Date:** ### 30 May 2023
|
576 |
+
**Word Count (Title):** 12 | **Word Count (Summary):** 275
|
577 |
+
|
578 |
+
**Links:** [Abstract](https://arxiv.org/abs/2305.18993)) | [PDF](https://arxiv.org/pdf/2305.18993).pdf)
|
579 |
+
|
580 |
+
**High Info Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
|
581 |
+
**ROUGE Score:** 5.45%
|
582 |
+
|
583 |
+
### π€ TTF Read Aloud
|
584 |
+
- **Title:** [ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models](https://arxiv.org/abs/2305.18993)
|
585 |
+
- **Key Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
|
586 |
+
- **ROUGE:** 5.45%
|
587 |
+
|
588 |
+
#### Mermaid Graph of Key Concepts
|
589 |
+
```mermaid
|
590 |
+
flowchart TD
|
591 |
+
T1["prompt"] --> T2["tuning"]
|
592 |
+
T2["tuning"] --> T3["text"]
|
593 |
+
T3["text"] --> T4["encoder"]
|
594 |
+
T4["encoder"] --> T5["text encoder"]
|
595 |
+
T5["text encoder"] --> T6["methods"]
|
596 |
+
T6["methods"] --> T7["embeddings"]
|
597 |
+
T7["embeddings"] --> T8["approach"]
|
598 |
+
T8["approach"] --> T9["our"]
|
599 |
+
T9["our"] --> T10["the text"]
|
600 |
+
T10["the text"] --> T11["can"]
|
601 |
+
T11["can"] --> T12["by"]
|
602 |
+
T12["by"] --> T13["is"]
|
603 |
+
T13["is"] --> T14["we"]
|
604 |
+
T14["we"] --> T15["as"]
|
605 |
+
```
|
606 |
+
|
607 |
+
---
|
608 |
+
|
609 |
+
|
610 |
+
## π [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
|
611 |
+
|
612 |
+
**Authors:** Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
|
613 |
+
**Date:** ### 17 May 2023
|
614 |
+
**Word Count (Title):** 7 | **Word Count (Summary):** 279
|
615 |
+
|
616 |
+
**Links:** [Abstract](https://arxiv.org/abs/2305.10314)) | [PDF](https://arxiv.org/pdf/2305.10314).pdf)
|
617 |
+
|
618 |
+
**High Info Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
|
619 |
+
**ROUGE Score:** 5.38%
|
620 |
+
|
621 |
+
### π€ TTF Read Aloud
|
622 |
+
- **Title:** [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
|
623 |
+
- **Key Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
|
624 |
+
- **ROUGE:** 5.38%
|
625 |
+
|
626 |
+
#### Mermaid Graph of Key Concepts
|
627 |
+
```mermaid
|
628 |
+
flowchart TD
|
629 |
+
T1["feedback"] --> T2["leti"]
|
630 |
+
T2["leti"] --> T3["textual"]
|
631 |
+
T3["textual"] --> T4["code"]
|
632 |
+
T4["code"] --> T5["language"]
|
633 |
+
T5["language"] --> T6["lms"]
|
634 |
+
T6["lms"] --> T7["that"]
|
635 |
+
T7["that"] --> T8["generation"]
|
636 |
+
T8["generation"] --> T9["natural"]
|
637 |
+
T9["natural"] --> T10["performance"]
|
638 |
+
T10["performance"] --> T11["textual feedback"]
|
639 |
+
T11["textual feedback"] --> T12["outputs"]
|
640 |
+
T12["outputs"] --> T13["from"]
|
641 |
+
T13["from"] --> T14["we"]
|
642 |
+
T14["we"] --> T15["binary"]
|
643 |
+
```
|
644 |
+
|
645 |
+
---
|
646 |
+
|
647 |
+
|
648 |
+
## π [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks](https://arxiv.org/abs/2210.03265)
|
649 |
+
|
650 |
+
**Authors:** Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, Zsolt Kira
|
651 |
+
**Date:** ### 07 Oct 2022
|
652 |
+
**Word Count (Title):** 8 | **Word Count (Summary):** 207
|
653 |
+
|
654 |
+
**Links:** [Abstract](https://arxiv.org/abs/2210.03265)) | [PDF](https://arxiv.org/pdf/2210.03265).pdf)
|
655 |
+
|
656 |
+
**High Info Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
|
657 |
+
**ROUGE Score:** 7.25%
|
658 |
+
|
659 |
+
### π€ TTF Read Aloud
|
660 |
+
- **Title:** [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks](https://arxiv.org/abs/2210.03265)
|
661 |
+
- **Key Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
|
662 |
+
- **ROUGE:** 7.25%
|
663 |
+
|
664 |
+
#### Mermaid Graph of Key Concepts
|
665 |
+
```mermaid
|
666 |
+
flowchart TD
|
667 |
+
T1["tasks"] --> T2["methods"]
|
668 |
+
T2["methods"] --> T3["vision"]
|
669 |
+
T3["vision"] --> T4["fine-tuning"]
|
670 |
+
T4["fine-tuning"] --> T5["parameter-efficient"]
|
671 |
+
T5["parameter-efficient"] --> T6["different"]
|
672 |
+
T6["different"] --> T7["parameters"]
|
673 |
+
T7["parameters"] --> T8["existing"]
|
674 |
+
T8["existing"] --> T9["vision tasks"]
|
675 |
+
T9["vision tasks"] --> T10["while"]
|
676 |
+
T10["while"] --> T11["transformers"]
|
677 |
+
T11["transformers"] --> T12["this"]
|
678 |
+
T12["this"] --> T13["trainable"]
|
679 |
+
T13["trainable"] --> T14["different tasks"]
|
680 |
+
T14["different tasks"] --> T15["tasks with"]
|
681 |
+
```
|
682 |
+
|
683 |
+
---
|
684 |
+
|
685 |
+
|
686 |
+
## π [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models](https://arxiv.org/abs/2111.00160)
|
687 |
+
|
688 |
+
**Authors:** Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, Yu Cheng
|
689 |
+
**Date:** ### 24 May 2023
|
690 |
+
**Word Count (Title):** 9 | **Word Count (Summary):** 239
|
691 |
+
|
692 |
+
**Links:** [Abstract](https://arxiv.org/abs/2111.00160)) | [PDF](https://arxiv.org/pdf/2111.00160).pdf)
|
693 |
+
|
694 |
+
**High Info Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
|
695 |
+
**ROUGE Score:** 6.28%
|
696 |
+
|
697 |
+
### π€ TTF Read Aloud
|
698 |
+
- **Title:** [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models](https://arxiv.org/abs/2111.00160)
|
699 |
+
- **Key Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
|
700 |
+
- **ROUGE:** 6.28%
|
701 |
+
|
702 |
+
#### Mermaid Graph of Key Concepts
|
703 |
+
```mermaid
|
704 |
+
flowchart TD
|
705 |
+
T1["by"] --> T2["pre-trained"]
|
706 |
+
T2["pre-trained"] --> T3["models"]
|
707 |
+
T3["models"] --> T4["fine-tuning"]
|
708 |
+
T4["fine-tuning"] --> T5["as"]
|
709 |
+
T5["as"] --> T6["two"]
|
710 |
+
T6["two"] --> T7["fine-tuned"]
|
711 |
+
T7["fine-tuned"] --> T8["model"]
|
712 |
+
T8["model"] --> T9["dsee"]
|
713 |
+
T9["dsee"] --> T10["language"]
|
714 |
+
T10["language"] --> T11["starting"]
|
715 |
+
T11["starting"] --> T12["point"]
|
716 |
+
T12["point"] --> T13["towards"]
|
717 |
+
T13["towards"] --> T14["downstream"]
|
718 |
+
T14["downstream"] --> T15["pain"]
|
719 |
+
```
|
720 |
+
|
721 |
+
---
|
722 |
+
|
723 |
+
|
724 |
+
## π [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
|
725 |
+
|
726 |
+
**Authors:** M Saiful Bari, Aston Zhang, Shuai Zheng, Xingjian Shi, Yi Zhu, Shafiq Joty, Mu Li
|
727 |
+
**Date:** ### 21 Dec 2022
|
728 |
+
**Word Count (Title):** 8 | **Word Count (Summary):** 147
|
729 |
+
|
730 |
+
**Links:** [Abstract](https://arxiv.org/abs/2212.10929)) | [PDF](https://arxiv.org/pdf/2212.10929).pdf)
|
731 |
+
|
732 |
+
**High Info Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
|
733 |
+
**ROUGE Score:** 10.2%
|
734 |
+
|
735 |
+
### π€ TTF Read Aloud
|
736 |
+
- **Title:** [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
|
737 |
+
- **Key Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
|
738 |
+
- **ROUGE:** 10.2%
|
739 |
+
|
740 |
+
#### Mermaid Graph of Key Concepts
|
741 |
+
```mermaid
|
742 |
+
flowchart TD
|
743 |
+
T1["spt"] --> T2["fine-tuning"]
|
744 |
+
T2["fine-tuning"] --> T3["prompts"]
|
745 |
+
T3["prompts"] --> T4["generalization"]
|
746 |
+
T4["generalization"] --> T5["prompt"]
|
747 |
+
T5["prompt"] --> T6["tuning"]
|
748 |
+
T6["tuning"] --> T7["datasets"]
|
749 |
+
T7["datasets"] --> T8["prompt tuning"]
|
750 |
+
T8["prompt tuning"] --> T9["language"]
|
751 |
+
T9["language"] --> T10["can"]
|
752 |
+
T10["can"] --> T11["multitask"]
|
753 |
+
T11["multitask"] --> T12["prompted"]
|
754 |
+
T12["prompted"] --> T13["learning"]
|
755 |
+
T13["learning"] --> T14["tasks"]
|
756 |
+
T14["tasks"] --> T15["methods"]
|
757 |
+
```
|
758 |
+
|
759 |
+
---
|
760 |
+
|
761 |
+
|
762 |
+
## π [HyperTuning: Toward Adapting Large Language Models without Back-propagation](https://arxiv.org/abs/2211.12485)
|
763 |
+
|
764 |
+
**Authors:** Jason Phang, Yi Mao, Pengcheng He, Weizhu Chen
|
765 |
+
**Date:** ### 22 Nov 2022
|
766 |
+
**Word Count (Title):** 8 | **Word Count (Summary):** 164
|
767 |
+
|
768 |
+
**Links:** [Abstract](https://arxiv.org/abs/2211.12485)) | [PDF](https://arxiv.org/pdf/2211.12485).pdf)
|
769 |
+
|
770 |
+
**High Info Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
|
771 |
+
**ROUGE Score:** 9.15%
|
772 |
+
|
773 |
+
### π€ TTF Read Aloud
|
774 |
+
- **Title:** [HyperTuning: Toward Adapting Large Language Models without Back-propagation](https://arxiv.org/abs/2211.12485)
|
775 |
+
- **Key Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
|
776 |
+
- **ROUGE:** 9.15%
|
777 |
+
|
778 |
+
#### Mermaid Graph of Key Concepts
|
779 |
+
```mermaid
|
780 |
+
flowchart TD
|
781 |
+
T1["that"] --> T2["parameters"]
|
782 |
+
T2["parameters"] --> T3["we"]
|
783 |
+
T3["we"] --> T4["language"]
|
784 |
+
T4["language"] --> T5["fine-tuning"]
|
785 |
+
T5["fine-tuning"] --> T6["large"]
|
786 |
+
T6["large"] --> T7["tasks"]
|
787 |
+
T7["tasks"] --> T8["can"]
|
788 |
+
T8["can"] --> T9["hypertuning"]
|
789 |
+
T9["hypertuning"] --> T10["model"]
|
790 |
+
T10["model"] --> T11["hypermodel"]
|
791 |
+
T11["hypermodel"] --> T12["generate"]
|
792 |
+
T12["generate"] --> T13["hypert5"]
|
793 |
+
T13["hypert5"] --> T14["parameters for"]
|
794 |
+
T14["parameters for"] --> T15["models"]
|
795 |
+
```
|
796 |
+
|
797 |
+
---
|