awacke1 commited on
Commit
183fff9
Β·
verified Β·
1 Parent(s): bbadb89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +784 -1
README.md CHANGED
@@ -11,4 +11,787 @@ license: mit
11
  short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
12
  ---
13
 
14
+ LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners β€” Arxiv Link)
15
+ Composable Sparse Fine-Tuning for Cross-Lingual Transfer β€” Arxiv Link)
16
+ Efficient Fine-Tuning of Compressed Language Models with Learners β€” Arxiv Link)
17
+ Task Adaptive Parameter Sharing for Multi-Task Learning β€” Arxiv Link)
18
+ RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture β€” Arxiv Link)
19
+ Scaling Sparse Fine-Tuning to Large Language Models β€” Arxiv Link)
20
+ Exploring and Evaluating Personalized Models for Code Generation β€” Arxiv Link)
21
+ UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory β€” Arxiv Link)
22
+ Weaver: Foundation Models for Creative Writing β€” Arxiv Link)
23
+ PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models β€” Arxiv Link)
24
+ AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning β€” Arxiv Link)
25
+ AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning β€” Arxiv Link)
26
+ ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization β€” Arxiv Link)
27
+ Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models β€” Arxiv Link)
28
+ ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models β€” Arxiv Link)
29
+ LeTI: Learning to Generate from Textual Interactions β€” Arxiv Link)
30
+ Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks β€” Arxiv Link)
31
+ DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models β€” Arxiv Link)
32
+ SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning β€” Arxiv Link)
33
+ HyperTuning: Toward Adapting Large Language Models without Back-propagation β€” Arxiv Link)
34
+
35
+ With torch, transformers, and specialized fine tuning of small models we can build to specification of input dataset and easily create RAG agents with fine tuned models using duckduckgo and smolagents. Show state of art SFT for agentic RAG to help manage models and gain ROI.
36
+
37
+ # Detailed Research Paper Summary
38
+
39
+
40
+ ## πŸ“„ [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners](https://arxiv.org/abs/2110.06274)
41
+
42
+ **Authors:** Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
43
+ **Date:** ### 18 May 2022
44
+ **Word Count (Title):** 8 | **Word Count (Summary):** 219
45
+
46
+ **Links:** [Abstract](https://arxiv.org/abs/2110.06274)) | [PDF](https://arxiv.org/pdf/2110.06274).pdf)
47
+
48
+ **High Info Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
49
+ **ROUGE Score:** 6.85%
50
+
51
+ ### 🎀 TTF Read Aloud
52
+ - **Title:** [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners](https://arxiv.org/abs/2110.06274)
53
+ - **Key Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
54
+ - **ROUGE:** 6.85%
55
+
56
+ #### Mermaid Graph of Key Concepts
57
+ ```mermaid
58
+ flowchart TD
59
+ T1["list"] --> T2["is"]
60
+ T2["is"] --> T3["self-training"]
61
+ T3["self-training"] --> T4["fine-tuning"]
62
+ T4["fine-tuning"] --> T5["parameters"]
63
+ T5["parameters"] --> T6["we"]
64
+ T6["we"] --> T7["few-shot"]
65
+ T7["few-shot"] --> T8["learning"]
66
+ T8["learning"] --> T9["over"]
67
+ T9["over"] --> T10["that"]
68
+ T10["that"] --> T11["prompt-based"]
69
+ T11["prompt-based"] --> T12["fn"]
70
+ T12["fn"] --> T13["use"]
71
+ T13["use"] --> T14["as"]
72
+ T14["as"] --> T15["model"]
73
+ ```
74
+
75
+ ---
76
+
77
+
78
+ ## πŸ“„ [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
79
+
80
+ **Authors:** Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, Ivan Vuli\'c
81
+ **Date:** ### 09 Feb 2023
82
+ **Word Count (Title):** 6 | **Word Count (Summary):** 218
83
+
84
+ **Links:** [Abstract](https://arxiv.org/abs/2110.07560)) | [PDF](https://arxiv.org/pdf/2110.07560).pdf)
85
+
86
+ **High Info Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
87
+ **ROUGE Score:** 6.88%
88
+
89
+ ### 🎀 TTF Read Aloud
90
+ - **Title:** [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
91
+ - **Key Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
92
+ - **ROUGE:** 6.88%
93
+
94
+ #### Mermaid Graph of Key Concepts
95
+ ```mermaid
96
+ flowchart TD
97
+ T1["fine-tuning"] --> T2["model"]
98
+ T2["model"] --> T3["adapters"]
99
+ T3["adapters"] --> T4["language"]
100
+ T4["language"] --> T5["we"]
101
+ T5["we"] --> T6["masks"]
102
+ T6["masks"] --> T7["sparse"]
103
+ T7["sparse"] --> T8["be"]
104
+ T8["be"] --> T9["both"]
105
+ T9["both"] --> T10["in a"]
106
+ T10["in a"] --> T11["parameters"]
107
+ T11["parameters"] --> T12["large"]
108
+ T12["large"] --> T13["pretrained"]
109
+ T13["pretrained"] --> T14["transfer"]
110
+ T14["transfer"] --> T15["prevent"]
111
+ ```
112
+
113
+ ---
114
+
115
+
116
+ ## πŸ“„ [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
117
+
118
+ **Authors:** Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J. Clark, Brett H. Meyer, Warren J. Gross
119
+ **Date:** ### 03 Aug 2022
120
+ **Word Count (Title):** 8 | **Word Count (Summary):** 131
121
+
122
+ **Links:** [Abstract](https://arxiv.org/abs/2208.02070)) | [PDF](https://arxiv.org/pdf/2208.02070).pdf)
123
+
124
+ **High Info Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
125
+ **ROUGE Score:** 11.45%
126
+
127
+ ### 🎀 TTF Read Aloud
128
+ - **Title:** [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
129
+ - **Key Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
130
+ - **ROUGE:** 11.45%
131
+
132
+ #### Mermaid Graph of Key Concepts
133
+ ```mermaid
134
+ flowchart TD
135
+ T1["fine-tuning"] --> T2["training"]
136
+ T2["training"] --> T3["learners"]
137
+ T3["learners"] --> T4["models"]
138
+ T4["models"] --> T5["works"]
139
+ T5["works"] --> T6["learner"]
140
+ T6["learner"] --> T7["modules"]
141
+ T7["modules"] --> T8["methods"]
142
+ T8["methods"] --> T9["that"]
143
+ T9["that"] --> T10["convergence"]
144
+ T10["convergence"] --> T11["resource"]
145
+ T11["resource"] --> T12["utilization"]
146
+ T12["utilization"] --> T13["by"]
147
+ T13["by"] --> T14["parameters"]
148
+ T14["parameters"] --> T15["learner modules"]
149
+ ```
150
+
151
+ ---
152
+
153
+
154
+ ## πŸ“„ [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
155
+
156
+ **Authors:** Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul Bhotika, Stefano Soatto
157
+ **Date:** ### 30 Mar 2022
158
+ **Word Count (Title):** 7 | **Word Count (Summary):** 183
159
+
160
+ **Links:** [Abstract](https://arxiv.org/abs/2203.16708)) | [PDF](https://arxiv.org/pdf/2203.16708).pdf)
161
+
162
+ **High Info Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
163
+ **ROUGE Score:** 8.2%
164
+
165
+ ### 🎀 TTF Read Aloud
166
+ - **Title:** [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
167
+ - **Key Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
168
+ - **ROUGE:** 8.2%
169
+
170
+ #### Mermaid Graph of Key Concepts
171
+ ```mermaid
172
+ flowchart TD
173
+ T1["tasks"] --> T2["taps"]
174
+ T2["taps"] --> T3["model"]
175
+ T3["model"] --> T4["downstream"]
176
+ T4["downstream"] --> T5["task"]
177
+ T5["task"] --> T6["base"]
178
+ T6["base"] --> T7["task-specific"]
179
+ T7["task-specific"] --> T8["layers"]
180
+ T8["layers"] --> T9["while"]
181
+ T9["while"] --> T10["downstream tasks"]
182
+ T10["downstream tasks"] --> T11["base model"]
183
+ T11["base model"] --> T12["models"]
184
+ T12["models"] --> T13["learning"]
185
+ T13["learning"] --> T14["fine-tuning"]
186
+ T14["fine-tuning"] --> T15["is"]
187
+ ```
188
+
189
+ ---
190
+
191
+
192
+ ## πŸ“„ [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture](https://arxiv.org/abs/2401.08406)
193
+
194
+ **Authors:** Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha, Roberto de M. Estev\~ao Filho, Todd Hendry, Daniel Holstein, Jennifer Marsman, Nick Mecklenburg, Sara Malvar, Leonardo O. Nunes, Rafael Padilha, Morris Sharp, Bruno Silva, Swati Sharma, Vijay Aski, Ranveer Chandra
195
+ **Date:** ### 30 Jan 2024
196
+ **Word Count (Title):** 11 | **Word Count (Summary):** 281
197
+
198
+ **Links:** [Abstract](https://arxiv.org/abs/2401.08406)) | [PDF](https://arxiv.org/pdf/2401.08406).pdf)
199
+
200
+ **High Info Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
201
+ **ROUGE Score:** 5.34%
202
+
203
+ ### 🎀 TTF Read Aloud
204
+ - **Title:** [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture](https://arxiv.org/abs/2401.08406)
205
+ - **Key Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
206
+ - **ROUGE:** 5.34%
207
+
208
+ #### Mermaid Graph of Key Concepts
209
+ ```mermaid
210
+ flowchart TD
211
+ T1["fine-tuning"] --> T2["we"]
212
+ T2["we"] --> T3["rag"]
213
+ T3["rag"] --> T4["llms"]
214
+ T4["llms"] --> T5["pipeline"]
215
+ T5["pipeline"] --> T6["p"]
216
+ T6["p"] --> T7["rag and"]
217
+ T7["rag and"] --> T8["are"]
218
+ T8["are"] --> T9["knowledge"]
219
+ T9["knowledge"] --> T10["model"]
220
+ T10["model"] --> T11["our"]
221
+ T11["our"] --> T12["from"]
222
+ T12["from"] --> T13["results"]
223
+ T13["results"] --> T14["and fine-tuning"]
224
+ T14["and fine-tuning"] --> T15["which"]
225
+ ```
226
+
227
+ ---
228
+
229
+
230
+ ## πŸ“„ [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
231
+
232
+ **Authors:** Alan Ansell and Ivan Vuli\'c and Hannah Sterz and Anna Korhonen and Edoardo M. Ponti
233
+ **Date:** ### 02 Feb 2024
234
+ **Word Count (Title):** 7 | **Word Count (Summary):** 219
235
+
236
+ **Links:** [Abstract](https://arxiv.org/abs/2401.16405)) | [PDF](https://arxiv.org/pdf/2401.16405).pdf)
237
+
238
+ **High Info Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
239
+ **ROUGE Score:** 6.85%
240
+
241
+ ### 🎀 TTF Read Aloud
242
+ - **Title:** [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
243
+ - **Key Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
244
+ - **ROUGE:** 6.85%
245
+
246
+ #### Mermaid Graph of Key Concepts
247
+ ```mermaid
248
+ flowchart TD
249
+ T1["we"] --> T2["their"]
250
+ T2["their"] --> T3["llms"]
251
+ T3["llms"] --> T4["fine-tuning"]
252
+ T4["fine-tuning"] --> T5["spiel"]
253
+ T5["spiel"] --> T6["parameters"]
254
+ T6["parameters"] --> T7["sparse"]
255
+ T7["sparse"] --> T8["terms"]
256
+ T8["terms"] --> T9["indices"]
257
+ T9["indices"] --> T10["deltas"]
258
+ T10["deltas"] --> T11["sparse fine-tuning"]
259
+ T11["sparse fine-tuning"] --> T12["in terms"]
260
+ T12["in terms"] --> T13["terms of"]
261
+ T13["terms of"] --> T14["parameter-efficient"]
262
+ T14["parameter-efficient"] --> T15["methods"]
263
+ ```
264
+
265
+ ---
266
+
267
+
268
+ ## πŸ“„ [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
269
+
270
+ **Authors:** Andrei Zlotchevski, Dawn Drain, Alexey Svyatkovskiy, Colin Clement, Neel Sundaresan, Michele Tufano
271
+ **Date:** ### 20 Sep 2022
272
+ **Word Count (Title):** 8 | **Word Count (Summary):** 226
273
+
274
+ **Links:** [Abstract](https://arxiv.org/abs/2208.13928)) | [PDF](https://arxiv.org/pdf/2208.13928).pdf)
275
+
276
+ **High Info Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
277
+ **ROUGE Score:** 6.64%
278
+
279
+ ### 🎀 TTF Read Aloud
280
+ - **Title:** [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
281
+ - **Key Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
282
+ - **ROUGE:** 6.64%
283
+
284
+ #### Mermaid Graph of Key Concepts
285
+ ```mermaid
286
+ flowchart TD
287
+ T1["model"] --> T2["fine-tuning"]
288
+ T2["fine-tuning"] --> T3["we"]
289
+ T3["we"] --> T4["which"]
290
+ T4["which"] --> T5["are"]
291
+ T5["are"] --> T6["code"]
292
+ T6["code"] --> T7["evaluate"]
293
+ T7["evaluate"] --> T8["parameters"]
294
+ T8["parameters"] --> T9["large"]
295
+ T9["large"] --> T10["transformer"]
296
+ T10["transformer"] --> T11["modeling"]
297
+ T11["modeling"] --> T12["learning"]
298
+ T12["learning"] --> T13["token"]
299
+ T13["token"] --> T14["generalization"]
300
+ T14["generalization"] --> T15["personalization"]
301
+ ```
302
+
303
+ ---
304
+
305
+
306
+ ## πŸ“„ [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory](https://arxiv.org/abs/2308.14316)
307
+
308
+ **Authors:** Haiwen Diao, Bo Wan, Ying Zhang, Xu Jia, Huchuan Lu, Long Chen
309
+ **Date:** ### 28 Aug 2023
310
+ **Word Count (Title):** 12 | **Word Count (Summary):** 225
311
+
312
+ **Links:** [Abstract](https://arxiv.org/abs/2308.14316)) | [PDF](https://arxiv.org/pdf/2308.14316).pdf)
313
+
314
+ **High Info Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
315
+ **ROUGE Score:** 6.67%
316
+
317
+ ### 🎀 TTF Read Aloud
318
+ - **Title:** [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory](https://arxiv.org/abs/2308.14316)
319
+ - **Key Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
320
+ - **ROUGE:** 6.67%
321
+
322
+ #### Mermaid Graph of Key Concepts
323
+ ```mermaid
324
+ flowchart TD
325
+ T1["petl"] --> T2["unipt"]
326
+ T2["unipt"] --> T3["pre-trained"]
327
+ T3["pre-trained"] --> T4["methods"]
328
+ T4["methods"] --> T5["we"]
329
+ T5["we"] --> T6["parallel"]
330
+ T6["parallel"] --> T7["that"]
331
+ T7["that"] --> T8["petl methods"]
332
+ T8["petl methods"] --> T9["achieve"]
333
+ T9["achieve"] --> T10["performance"]
334
+ T10["performance"] --> T11["tasks"]
335
+ T11["tasks"] --> T12["parameters"]
336
+ T12["parameters"] --> T13["networks"]
337
+ T13["networks"] --> T14["is"]
338
+ T14["is"] --> T15["transfer"]
339
+ ```
340
+
341
+ ---
342
+
343
+
344
+ ## πŸ“„ [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
345
+
346
+ **Authors:** Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei Gao, Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu, Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng, Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao, Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu Tayier, Zhenyu Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang, Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, Yuchen Eleanor Jiang, and Wangchunshu Zhou
347
+ **Date:** ### 30 Jan 2024
348
+ **Word Count (Title):** 6 | **Word Count (Summary):** 237
349
+
350
+ **Links:** [Abstract](https://arxiv.org/abs/2401.17268)) | [PDF](https://arxiv.org/pdf/2401.17268).pdf)
351
+
352
+ **High Info Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
353
+ **ROUGE Score:** 6.33%
354
+
355
+ ### 🎀 TTF Read Aloud
356
+ - **Title:** [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
357
+ - **Key Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
358
+ - **ROUGE:** 6.33%
359
+
360
+ #### Mermaid Graph of Key Concepts
361
+ ```mermaid
362
+ flowchart TD
363
+ T1["weaver"] --> T2["writing"]
364
+ T2["writing"] --> T3["llms"]
365
+ T3["llms"] --> T4["models"]
366
+ T4["models"] --> T5["we"]
367
+ T5["we"] --> T6["our"]
368
+ T6["our"] --> T7["family"]
369
+ T7["family"] --> T8["large"]
370
+ T8["large"] --> T9["language"]
371
+ T9["language"] --> T10["content"]
372
+ T10["content"] --> T11["creation"]
373
+ T11["creation"] --> T12["carefully"]
374
+ T12["carefully"] --> T13["improving"]
375
+ T13["improving"] --> T14["capabilities"]
376
+ T14["capabilities"] --> T15["professional"]
377
+ ```
378
+
379
+ ---
380
+
381
+
382
+ ## πŸ“„ [PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models](https://arxiv.org/abs/2204.01172)
383
+
384
+ **Authors:** Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James Henderson, Marzieh Saeidi, Lambert Mathias, Veselin Stoyanov, and Majid Yazdani
385
+ **Date:** ### 26 Apr 2022
386
+ **Word Count (Title):** 9 | **Word Count (Summary):** 184
387
+
388
+ **Links:** [Abstract](https://arxiv.org/abs/2204.01172)) | [PDF](https://arxiv.org/pdf/2204.01172).pdf)
389
+
390
+ **High Info Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
391
+ **ROUGE Score:** 8.15%
392
+
393
+ ### 🎀 TTF Read Aloud
394
+ - **Title:** [PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models](https://arxiv.org/abs/2204.01172)
395
+ - **Key Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
396
+ - **ROUGE:** 8.15%
397
+
398
+ #### Mermaid Graph of Key Concepts
399
+ ```mermaid
400
+ flowchart TD
401
+ T1["few-shot"] --> T2["fine-tuning"]
402
+ T2["fine-tuning"] --> T3["that"]
403
+ T3["that"] --> T4["perfect"]
404
+ T4["perfect"] --> T5["we"]
405
+ T5["we"] --> T6["which"]
406
+ T6["which"] --> T7["methods"]
407
+ T7["methods"] --> T8["plms"]
408
+ T8["plms"] --> T9["engineered"]
409
+ T9["engineered"] --> T10["prompts"]
410
+ T10["prompts"] --> T11["verbalizers"]
411
+ T11["verbalizers"] --> T12["new"]
412
+ T12["new"] --> T13["task"]
413
+ T13["task"] --> T14["can"]
414
+ T14["can"] --> T15["simple"]
415
+ ```
416
+
417
+ ---
418
+
419
+
420
+ ## πŸ“„ [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
421
+
422
+ **Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
423
+ **Date:** ### 02 Nov 2022
424
+ **Word Count (Title):** 6 | **Word Count (Summary):** 191
425
+
426
+ **Links:** [Abstract](https://arxiv.org/abs/2205.12410)) | [PDF](https://arxiv.org/pdf/2205.12410).pdf)
427
+
428
+ **High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
429
+ **ROUGE Score:** 7.85%
430
+
431
+ ### 🎀 TTF Read Aloud
432
+ - **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
433
+ - **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
434
+ - **ROUGE:** 7.85%
435
+
436
+ #### Mermaid Graph of Key Concepts
437
+ ```mermaid
438
+ flowchart TD
439
+ T1["fine-tuning"] --> T2["peft"]
440
+ T2["peft"] --> T3["plm"]
441
+ T3["plm"] --> T4["adamix"]
442
+ T4["adamix"] --> T5["tasks"]
443
+ T5["tasks"] --> T6["parameters"]
444
+ T6["parameters"] --> T7["we"]
445
+ T7["we"] --> T8["method"]
446
+ T8["method"] --> T9["that"]
447
+ T9["that"] --> T10["mixture"]
448
+ T10["mixture"] --> T11["the plm"]
449
+ T11["the plm"] --> T12["peft method"]
450
+ T12["peft method"] --> T13["a mixture"]
451
+ T13["a mixture"] --> T14["mixture of"]
452
+ T14["mixture of"] --> T15["large"]
453
+ ```
454
+
455
+ ---
456
+
457
+
458
+ ## πŸ“„ [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
459
+
460
+ **Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
461
+ **Date:** ### 02 Nov 2022
462
+ **Word Count (Title):** 6 | **Word Count (Summary):** 191
463
+
464
+ **Links:** [Abstract](https://arxiv.org/abs/2210.17451)) | [PDF](https://arxiv.org/pdf/2210.17451).pdf)
465
+
466
+ **High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
467
+ **ROUGE Score:** 7.85%
468
+
469
+ ### 🎀 TTF Read Aloud
470
+ - **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
471
+ - **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
472
+ - **ROUGE:** 7.85%
473
+
474
+ #### Mermaid Graph of Key Concepts
475
+ ```mermaid
476
+ flowchart TD
477
+ T1["fine-tuning"] --> T2["peft"]
478
+ T2["peft"] --> T3["plm"]
479
+ T3["plm"] --> T4["adamix"]
480
+ T4["adamix"] --> T5["tasks"]
481
+ T5["tasks"] --> T6["parameters"]
482
+ T6["parameters"] --> T7["we"]
483
+ T7["we"] --> T8["method"]
484
+ T8["method"] --> T9["that"]
485
+ T9["that"] --> T10["mixture"]
486
+ T10["mixture"] --> T11["the plm"]
487
+ T11["the plm"] --> T12["peft method"]
488
+ T12["peft method"] --> T13["a mixture"]
489
+ T13["a mixture"] --> T14["mixture of"]
490
+ T14["mixture of"] --> T15["large"]
491
+ ```
492
+
493
+ ---
494
+
495
+
496
+ ## πŸ“„ [ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
497
+
498
+ **Authors:** Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal
499
+ **Date:** ### 22 Nov 2023
500
+ **Word Count (Title):** 11 | **Word Count (Summary):** 247
501
+
502
+ **Links:** [Abstract](https://arxiv.org/abs/2311.13171)) | [PDF](https://arxiv.org/pdf/2311.13171).pdf)
503
+
504
+ **High Info Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
505
+ **ROUGE Score:** 6.07%
506
+
507
+ ### 🎀 TTF Read Aloud
508
+ - **Title:** [ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
509
+ - **Key Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
510
+ - **ROUGE:** 6.07%
511
+
512
+ #### Mermaid Graph of Key Concepts
513
+ ```mermaid
514
+ flowchart TD
515
+ T1["compeft"] --> T2["models"]
516
+ T2["models"] --> T3["peft"]
517
+ T3["peft"] --> T4["we"]
518
+ T4["we"] --> T5["expert"]
519
+ T5["expert"] --> T6["that"]
520
+ T6["that"] --> T7["expert models"]
521
+ T7["expert models"] --> T8["it"]
522
+ T8["it"] --> T9["model"]
523
+ T9["model"] --> T10["generalization"]
524
+ T10["generalization"] --> T11["by"]
525
+ T11["by"] --> T12["size"]
526
+ T12["size"] --> T13["performance"]
527
+ T13["performance"] --> T14["show"]
528
+ T14["show"] --> T15["we show"]
529
+ ```
530
+
531
+ ---
532
+
533
+
534
+ ## πŸ“„ [Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
535
+
536
+ **Authors:** Haoran Zhao and Jake Ryland Williams
537
+ **Date:** ### 18 Nov 2023
538
+ **Word Count (Title):** 16 | **Word Count (Summary):** 237
539
+
540
+ **Links:** [Abstract](https://arxiv.org/abs/2311.11012)) | [PDF](https://arxiv.org/pdf/2311.11012).pdf)
541
+
542
+ **High Info Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
543
+ **ROUGE Score:** 6.33%
544
+
545
+ ### 🎀 TTF Read Aloud
546
+ - **Title:** [Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
547
+ - **Key Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
548
+ - **ROUGE:** 6.33%
549
+
550
+ #### Mermaid Graph of Key Concepts
551
+ ```mermaid
552
+ flowchart TD
553
+ T1["bit-cipher"] --> T2["while"]
554
+ T2["while"] --> T3["word"]
555
+ T3["word"] --> T4["that"]
556
+ T4["that"] --> T5["we"]
557
+ T5["we"] --> T6["embeddings"]
558
+ T6["embeddings"] --> T7["efficiency"]
559
+ T7["efficiency"] --> T8["experiments"]
560
+ T8["experiments"] --> T9["training"]
561
+ T9["training"] --> T10["classic"]
562
+ T10["classic"] --> T11["from"]
563
+ T11["from"] --> T12["convergence"]
564
+ T12["convergence"] --> T13["glove"]
565
+ T13["glove"] --> T14["word2vec"]
566
+ T14["word2vec"] --> T15["process"]
567
+ ```
568
+
569
+ ---
570
+
571
+
572
+ ## πŸ“„ [ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models](https://arxiv.org/abs/2305.18993)
573
+
574
+ **Authors:** Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang, Kang Li, Qicheng Lao
575
+ **Date:** ### 30 May 2023
576
+ **Word Count (Title):** 12 | **Word Count (Summary):** 275
577
+
578
+ **Links:** [Abstract](https://arxiv.org/abs/2305.18993)) | [PDF](https://arxiv.org/pdf/2305.18993).pdf)
579
+
580
+ **High Info Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
581
+ **ROUGE Score:** 5.45%
582
+
583
+ ### 🎀 TTF Read Aloud
584
+ - **Title:** [ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models](https://arxiv.org/abs/2305.18993)
585
+ - **Key Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
586
+ - **ROUGE:** 5.45%
587
+
588
+ #### Mermaid Graph of Key Concepts
589
+ ```mermaid
590
+ flowchart TD
591
+ T1["prompt"] --> T2["tuning"]
592
+ T2["tuning"] --> T3["text"]
593
+ T3["text"] --> T4["encoder"]
594
+ T4["encoder"] --> T5["text encoder"]
595
+ T5["text encoder"] --> T6["methods"]
596
+ T6["methods"] --> T7["embeddings"]
597
+ T7["embeddings"] --> T8["approach"]
598
+ T8["approach"] --> T9["our"]
599
+ T9["our"] --> T10["the text"]
600
+ T10["the text"] --> T11["can"]
601
+ T11["can"] --> T12["by"]
602
+ T12["by"] --> T13["is"]
603
+ T13["is"] --> T14["we"]
604
+ T14["we"] --> T15["as"]
605
+ ```
606
+
607
+ ---
608
+
609
+
610
+ ## πŸ“„ [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
611
+
612
+ **Authors:** Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
613
+ **Date:** ### 17 May 2023
614
+ **Word Count (Title):** 7 | **Word Count (Summary):** 279
615
+
616
+ **Links:** [Abstract](https://arxiv.org/abs/2305.10314)) | [PDF](https://arxiv.org/pdf/2305.10314).pdf)
617
+
618
+ **High Info Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
619
+ **ROUGE Score:** 5.38%
620
+
621
+ ### 🎀 TTF Read Aloud
622
+ - **Title:** [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
623
+ - **Key Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
624
+ - **ROUGE:** 5.38%
625
+
626
+ #### Mermaid Graph of Key Concepts
627
+ ```mermaid
628
+ flowchart TD
629
+ T1["feedback"] --> T2["leti"]
630
+ T2["leti"] --> T3["textual"]
631
+ T3["textual"] --> T4["code"]
632
+ T4["code"] --> T5["language"]
633
+ T5["language"] --> T6["lms"]
634
+ T6["lms"] --> T7["that"]
635
+ T7["that"] --> T8["generation"]
636
+ T8["generation"] --> T9["natural"]
637
+ T9["natural"] --> T10["performance"]
638
+ T10["performance"] --> T11["textual feedback"]
639
+ T11["textual feedback"] --> T12["outputs"]
640
+ T12["outputs"] --> T13["from"]
641
+ T13["from"] --> T14["we"]
642
+ T14["we"] --> T15["binary"]
643
+ ```
644
+
645
+ ---
646
+
647
+
648
+ ## πŸ“„ [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks](https://arxiv.org/abs/2210.03265)
649
+
650
+ **Authors:** Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, Zsolt Kira
651
+ **Date:** ### 07 Oct 2022
652
+ **Word Count (Title):** 8 | **Word Count (Summary):** 207
653
+
654
+ **Links:** [Abstract](https://arxiv.org/abs/2210.03265)) | [PDF](https://arxiv.org/pdf/2210.03265).pdf)
655
+
656
+ **High Info Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
657
+ **ROUGE Score:** 7.25%
658
+
659
+ ### 🎀 TTF Read Aloud
660
+ - **Title:** [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks](https://arxiv.org/abs/2210.03265)
661
+ - **Key Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
662
+ - **ROUGE:** 7.25%
663
+
664
+ #### Mermaid Graph of Key Concepts
665
+ ```mermaid
666
+ flowchart TD
667
+ T1["tasks"] --> T2["methods"]
668
+ T2["methods"] --> T3["vision"]
669
+ T3["vision"] --> T4["fine-tuning"]
670
+ T4["fine-tuning"] --> T5["parameter-efficient"]
671
+ T5["parameter-efficient"] --> T6["different"]
672
+ T6["different"] --> T7["parameters"]
673
+ T7["parameters"] --> T8["existing"]
674
+ T8["existing"] --> T9["vision tasks"]
675
+ T9["vision tasks"] --> T10["while"]
676
+ T10["while"] --> T11["transformers"]
677
+ T11["transformers"] --> T12["this"]
678
+ T12["this"] --> T13["trainable"]
679
+ T13["trainable"] --> T14["different tasks"]
680
+ T14["different tasks"] --> T15["tasks with"]
681
+ ```
682
+
683
+ ---
684
+
685
+
686
+ ## πŸ“„ [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models](https://arxiv.org/abs/2111.00160)
687
+
688
+ **Authors:** Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, Yu Cheng
689
+ **Date:** ### 24 May 2023
690
+ **Word Count (Title):** 9 | **Word Count (Summary):** 239
691
+
692
+ **Links:** [Abstract](https://arxiv.org/abs/2111.00160)) | [PDF](https://arxiv.org/pdf/2111.00160).pdf)
693
+
694
+ **High Info Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
695
+ **ROUGE Score:** 6.28%
696
+
697
+ ### 🎀 TTF Read Aloud
698
+ - **Title:** [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models](https://arxiv.org/abs/2111.00160)
699
+ - **Key Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
700
+ - **ROUGE:** 6.28%
701
+
702
+ #### Mermaid Graph of Key Concepts
703
+ ```mermaid
704
+ flowchart TD
705
+ T1["by"] --> T2["pre-trained"]
706
+ T2["pre-trained"] --> T3["models"]
707
+ T3["models"] --> T4["fine-tuning"]
708
+ T4["fine-tuning"] --> T5["as"]
709
+ T5["as"] --> T6["two"]
710
+ T6["two"] --> T7["fine-tuned"]
711
+ T7["fine-tuned"] --> T8["model"]
712
+ T8["model"] --> T9["dsee"]
713
+ T9["dsee"] --> T10["language"]
714
+ T10["language"] --> T11["starting"]
715
+ T11["starting"] --> T12["point"]
716
+ T12["point"] --> T13["towards"]
717
+ T13["towards"] --> T14["downstream"]
718
+ T14["downstream"] --> T15["pain"]
719
+ ```
720
+
721
+ ---
722
+
723
+
724
+ ## πŸ“„ [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
725
+
726
+ **Authors:** M Saiful Bari, Aston Zhang, Shuai Zheng, Xingjian Shi, Yi Zhu, Shafiq Joty, Mu Li
727
+ **Date:** ### 21 Dec 2022
728
+ **Word Count (Title):** 8 | **Word Count (Summary):** 147
729
+
730
+ **Links:** [Abstract](https://arxiv.org/abs/2212.10929)) | [PDF](https://arxiv.org/pdf/2212.10929).pdf)
731
+
732
+ **High Info Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
733
+ **ROUGE Score:** 10.2%
734
+
735
+ ### 🎀 TTF Read Aloud
736
+ - **Title:** [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
737
+ - **Key Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
738
+ - **ROUGE:** 10.2%
739
+
740
+ #### Mermaid Graph of Key Concepts
741
+ ```mermaid
742
+ flowchart TD
743
+ T1["spt"] --> T2["fine-tuning"]
744
+ T2["fine-tuning"] --> T3["prompts"]
745
+ T3["prompts"] --> T4["generalization"]
746
+ T4["generalization"] --> T5["prompt"]
747
+ T5["prompt"] --> T6["tuning"]
748
+ T6["tuning"] --> T7["datasets"]
749
+ T7["datasets"] --> T8["prompt tuning"]
750
+ T8["prompt tuning"] --> T9["language"]
751
+ T9["language"] --> T10["can"]
752
+ T10["can"] --> T11["multitask"]
753
+ T11["multitask"] --> T12["prompted"]
754
+ T12["prompted"] --> T13["learning"]
755
+ T13["learning"] --> T14["tasks"]
756
+ T14["tasks"] --> T15["methods"]
757
+ ```
758
+
759
+ ---
760
+
761
+
762
+ ## πŸ“„ [HyperTuning: Toward Adapting Large Language Models without Back-propagation](https://arxiv.org/abs/2211.12485)
763
+
764
+ **Authors:** Jason Phang, Yi Mao, Pengcheng He, Weizhu Chen
765
+ **Date:** ### 22 Nov 2022
766
+ **Word Count (Title):** 8 | **Word Count (Summary):** 164
767
+
768
+ **Links:** [Abstract](https://arxiv.org/abs/2211.12485)) | [PDF](https://arxiv.org/pdf/2211.12485).pdf)
769
+
770
+ **High Info Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
771
+ **ROUGE Score:** 9.15%
772
+
773
+ ### 🎀 TTF Read Aloud
774
+ - **Title:** [HyperTuning: Toward Adapting Large Language Models without Back-propagation](https://arxiv.org/abs/2211.12485)
775
+ - **Key Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
776
+ - **ROUGE:** 9.15%
777
+
778
+ #### Mermaid Graph of Key Concepts
779
+ ```mermaid
780
+ flowchart TD
781
+ T1["that"] --> T2["parameters"]
782
+ T2["parameters"] --> T3["we"]
783
+ T3["we"] --> T4["language"]
784
+ T4["language"] --> T5["fine-tuning"]
785
+ T5["fine-tuning"] --> T6["large"]
786
+ T6["large"] --> T7["tasks"]
787
+ T7["tasks"] --> T8["can"]
788
+ T8["can"] --> T9["hypertuning"]
789
+ T9["hypertuning"] --> T10["model"]
790
+ T10["model"] --> T11["hypermodel"]
791
+ T11["hypermodel"] --> T12["generate"]
792
+ T12["generate"] --> T13["hypert5"]
793
+ T13["hypert5"] --> T14["parameters for"]
794
+ T14["parameters for"] --> T15["models"]
795
+ ```
796
+
797
+ ---