File size: 17,221 Bytes
017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f 017755d dc4eb4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math
from PIL import Image
import random
# Page Configuration with a Dash of Humor
st.set_page_config(
page_title="SFT Tiny Titans π",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! π"
}
)
# Model Configuration Class
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"models/{self.name}"
# Custom Dataset for SFT
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length // 2, padding="max_length", truncation=True, return_tensors="pt")
full_text = f"{prompt} {response}"
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
input_ids = prompt_encoding["input_ids"].squeeze()
attention_mask = prompt_encoding["attention_mask"].squeeze()
labels = full_encoding["input_ids"].squeeze()
prompt_len = prompt_encoding["input_ids"].ne(self.tokenizer.pad_token_id).sum().item()
labels[:prompt_len] = -100
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
# Model Builder Class with Easter Egg Jokes
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! π", "Training complete! Time for a binary coffee break. β"]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... β³ (Patience, young padawan!)"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
st.success(f"Model loaded! π {random.choice(self.jokes)}")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ (The AI is lifting weights!)"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success(f"SFT Fine-tuning completed! π {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... πΎ (Packing the AIβs suitcase!)"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! β
May the force be with it.")
def evaluate(self, prompt: str):
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Utility Functions with Wit
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯ (Grab it before it runs away!)</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
zipf.write(file_path, arcname)
def get_model_files():
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
def get_gallery_files(file_types):
files = []
for ext in file_types:
files.extend(glob.glob(f"*.{ext}"))
return sorted(files)
# Cargo Travel Time Tool
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
def to_radians(degrees: float) -> float:
return degrees * (math.pi / 180)
lat1, lon1 = map(to_radians, origin_coords)
lat2, lon2 = map(to_radians, destination_coords)
EARTH_RADIUS_KM = 6371.0
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
c = 2 * math.asin(math.sqrt(a))
distance = EARTH_RADIUS_KM * c
actual_distance = distance * 1.1
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
return round(flight_time, 2)
# Main App
st.title("SFT Tiny Titans π (Small but Mighty!)")
# Sidebar with Galleries
st.sidebar.header("Galleries & Shenanigans π¨")
st.sidebar.subheader("Image Gallery πΈ")
img_files = get_gallery_files(["png", "jpg", "jpeg"])
if img_files:
img_cols = st.sidebar.slider("Image Columns πΈ", 1, 5, 3)
cols = st.sidebar.columns(img_cols)
for idx, img_file in enumerate(img_files[:img_cols * 2]): # Limit to 2 rows
with cols[idx % img_cols]:
st.image(Image.open(img_file), caption=f"{img_file} πΌ", use_column_width=True)
st.sidebar.subheader("CSV Gallery π")
csv_files = get_gallery_files(["csv"])
if csv_files:
for csv_file in csv_files[:5]: # Limit to 5
st.sidebar.markdown(get_download_link(csv_file, "text/csv", f"{csv_file} π"), unsafe_allow_html=True)
st.sidebar.subheader("Model Management ποΈ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
if selected_model != "None" and st.sidebar.button("Load Model π"):
if 'builder' not in st.session_state:
st.session_state['builder'] = ModelBuilder()
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
st.session_state['builder'].load_model(selected_model, config)
st.session_state['model_loaded'] = True
st.rerun()
# Main UI with Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan π±", "Fine-Tune Titan π§", "Test Titan π§ͺ", "Agentic RAG Party π"])
with tab1:
st.header("Build Tiny Titan π± (Assemble Your Mini-Mecha!)")
base_model = st.selectbox(
"Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"],
help="Pick a pint-sized powerhouse (<1 GB)! SmolLM-135M (~270 MB), SmolLM-360M (~720 MB), Qwen1.5-0.5B (~1 GB)"
)
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model β¬οΈ"):
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
builder = ModelBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success(f"Model downloaded and saved to {config.model_path}! π (Tiny but feisty!)")
st.rerun()
with tab2:
st.header("Fine-Tune Titan π§ (Teach Your Titan Some Tricks!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! β οΈ (No Titan, no party!)")
else:
if st.button("Generate Sample CSV π"):
sample_data = [
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
{"prompt": "Explain machine learning", "response": "Machine learning is AIβs gym where models bulk up on data."},
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."},
]
csv_path = f"sft_data_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
writer.writeheader()
writer.writerows(sample_data)
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
st.success(f"Sample CSV generated as {csv_path}! β
(Fresh from the data oven!)")
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(
name=new_model_name,
base_model=st.session_state['builder'].config.base_model,
size="small",
domain=st.session_state['builder'].config.domain
)
st.session_state['builder'].config = new_config
with st.status("Fine-tuning Titan... β³ (Whipping it into shape!)", expanded=True) as status:
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
status.update(label="Fine-tuning completed! π (Titanβs ready to rumble!)", state="complete")
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
st.rerun()
with tab3:
st.header("Test Titan π§ͺ (Put Your Titan to the Test!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! β οΈ (No Titan, no test drive!)")
else:
if st.session_state['builder'].sft_data:
st.write("Testing with SFT Data:")
for item in st.session_state['builder'].sft_data[:3]:
prompt = item["prompt"]
expected = item["response"]
generated = st.session_state['builder'].evaluate(prompt)
st.write(f"**Prompt**: {prompt}")
st.write(f"**Expected**: {expected}")
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
st.write("---")
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
if st.button("Run Test βΆοΈ"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Generated Response**: {result} (Titanβs wisdom unleashed!)")
if st.button("Export Titan Files π¦"):
config = st.session_state['builder'].config
app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
st.title("Tiny Titan Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
with open("titan_app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\ntransformers\n"
with open("titan_requirements.txt", "w") as f:
f.write(reqs)
readme = f"""
# Tiny Titan Demo
## How to run
1. Install requirements: `pip install -r titan_requirements.txt`
2. Run the app: `streamlit run titan_app.py`
3. Input a prompt and click "Generate". Watch the magic unfold! πͺ
"""
with open("titan_README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("titan_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
st.markdown(get_download_link("titan_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
st.markdown(get_download_link("titan_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
st.success("Titan files exported! β
(Ready to conquer the galaxy!)")
with tab4:
st.header("Agentic RAG Party π (Party Like Itβs 2099!)")
st.write("This demo uses tiny Titans with Agentic RAG to plan a superhero party, powered by DuckDuckGo retrieval!")
if st.button("Run Agentic RAG Demo π"):
try:
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
# Load a tiny model (default to SmolLM-135M for speed)
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
# Define Agentic RAG agent with a witty twist
agent = CodeAgent(
model=model,
tokenizer=tokenizer,
tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time],
additional_authorized_imports=["pandas"],
planning_interval=5,
verbosity_level=2,
max_steps=15,
)
task = """
Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W). Use DuckDuckGo to search for the latest superhero party trends,
refine results for luxury elements (decorations, entertainment, catering), and calculate cargo travel times from key locations
(New York: 40.7128Β° N, 74.0060Β° W; LA: 34.0522Β° N, 118.2437Β° W; London: 51.5074Β° N, 0.1278Β° W) to Wayne Manor.
Synthesize a plan with at least 6 entries in a pandas dataframe, including locations, travel times, and luxury ideas.
Add a random superhero catchphrase to each entry for fun!
"""
with st.spinner("Planning the ultimate superhero bash... β³ (Calling all caped crusaders!)"):
result = agent.run(task)
st.write("Agentic RAG Party Plan:")
st.write(result)
st.write("Party on, Wayne! π¦ΈββοΈπ")
except ImportError:
st.error("Please install required packages: `pip install smolagents pandas`")
except Exception as e:
st.error(f"Error running demo: {str(e)} (Even Batman has off days!)")
|