Update app.py
Browse files
app.py
CHANGED
@@ -14,13 +14,20 @@ from dataclasses import dataclass
|
|
14 |
from typing import Optional, Tuple
|
15 |
import zipfile
|
16 |
import math
|
|
|
|
|
17 |
|
18 |
-
# Page Configuration
|
19 |
st.set_page_config(
|
20 |
-
page_title="SFT
|
21 |
page_icon="π€",
|
22 |
layout="wide",
|
23 |
initial_sidebar_state="expanded",
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
|
26 |
# Model Configuration Class
|
@@ -49,53 +56,37 @@ class SFTDataset(Dataset):
|
|
49 |
prompt = self.data[idx]["prompt"]
|
50 |
response = self.data[idx]["response"]
|
51 |
|
52 |
-
prompt_encoding = self.tokenizer(
|
53 |
-
prompt,
|
54 |
-
max_length=self.max_length // 2,
|
55 |
-
padding="max_length",
|
56 |
-
truncation=True,
|
57 |
-
return_tensors="pt"
|
58 |
-
)
|
59 |
-
|
60 |
full_text = f"{prompt} {response}"
|
61 |
-
full_encoding = self.tokenizer(
|
62 |
-
full_text,
|
63 |
-
max_length=self.max_length,
|
64 |
-
padding="max_length",
|
65 |
-
truncation=True,
|
66 |
-
return_tensors="pt"
|
67 |
-
)
|
68 |
|
69 |
input_ids = prompt_encoding["input_ids"].squeeze()
|
70 |
attention_mask = prompt_encoding["attention_mask"].squeeze()
|
71 |
labels = full_encoding["input_ids"].squeeze()
|
72 |
|
73 |
prompt_len = prompt_encoding["input_ids"].ne(self.tokenizer.pad_token_id).sum().item()
|
74 |
-
labels[:prompt_len] = -100
|
75 |
|
76 |
-
return {
|
77 |
-
"input_ids": input_ids,
|
78 |
-
"attention_mask": attention_mask,
|
79 |
-
"labels": labels
|
80 |
-
}
|
81 |
|
82 |
-
# Model Builder Class
|
83 |
class ModelBuilder:
|
84 |
def __init__(self):
|
85 |
self.config = None
|
86 |
self.model = None
|
87 |
self.tokenizer = None
|
88 |
self.sft_data = None
|
|
|
89 |
|
90 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
91 |
-
with st.spinner("Loading
|
92 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
93 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
94 |
if self.tokenizer.pad_token is None:
|
95 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
96 |
if config:
|
97 |
self.config = config
|
98 |
-
st.success("Model loaded!
|
99 |
return self
|
100 |
|
101 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
@@ -113,7 +104,7 @@ class ModelBuilder:
|
|
113 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
114 |
self.model.to(device)
|
115 |
for epoch in range(epochs):
|
116 |
-
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ"):
|
117 |
total_loss = 0
|
118 |
for batch in dataloader:
|
119 |
optimizer.zero_grad()
|
@@ -126,35 +117,29 @@ class ModelBuilder:
|
|
126 |
optimizer.step()
|
127 |
total_loss += loss.item()
|
128 |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
129 |
-
st.success("SFT Fine-tuning completed! π")
|
130 |
return self
|
131 |
|
132 |
def save_model(self, path: str):
|
133 |
-
with st.spinner("Saving model... πΎ"):
|
134 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
135 |
self.model.save_pretrained(path)
|
136 |
self.tokenizer.save_pretrained(path)
|
137 |
-
st.success(f"Model saved at {path}! β
")
|
138 |
|
139 |
def evaluate(self, prompt: str):
|
140 |
self.model.eval()
|
141 |
with torch.no_grad():
|
142 |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
143 |
-
outputs = self.model.generate(
|
144 |
-
**inputs,
|
145 |
-
max_new_tokens=50,
|
146 |
-
do_sample=True,
|
147 |
-
top_p=0.95,
|
148 |
-
temperature=0.7
|
149 |
-
)
|
150 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
151 |
|
152 |
-
# Utility Functions
|
153 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
154 |
with open(file_path, 'rb') as f:
|
155 |
data = f.read()
|
156 |
b64 = base64.b64encode(data).decode()
|
157 |
-
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}
|
158 |
|
159 |
def zip_directory(directory_path, zip_path):
|
160 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
@@ -167,12 +152,14 @@ def zip_directory(directory_path, zip_path):
|
|
167 |
def get_model_files():
|
168 |
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# Cargo Travel Time Tool
|
171 |
-
def calculate_cargo_travel_time(
|
172 |
-
origin_coords: Tuple[float, float],
|
173 |
-
destination_coords: Tuple[float, float],
|
174 |
-
cruising_speed_kmh: float = 750.0
|
175 |
-
) -> float:
|
176 |
def to_radians(degrees: float) -> float:
|
177 |
return degrees * (math.pi / 180)
|
178 |
lat1, lon1 = map(to_radians, origin_coords)
|
@@ -188,13 +175,28 @@ def calculate_cargo_travel_time(
|
|
188 |
return round(flight_time, 2)
|
189 |
|
190 |
# Main App
|
191 |
-
st.title("SFT
|
192 |
-
|
193 |
-
# Sidebar
|
194 |
-
st.sidebar.header("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
model_dirs = get_model_files()
|
196 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
197 |
-
|
198 |
if selected_model != "None" and st.sidebar.button("Load Model π"):
|
199 |
if 'builder' not in st.session_state:
|
200 |
st.session_state['builder'] = ModelBuilder()
|
@@ -204,21 +206,16 @@ if selected_model != "None" and st.sidebar.button("Load Model π"):
|
|
204 |
st.rerun()
|
205 |
|
206 |
# Main UI with Tabs
|
207 |
-
tab1, tab2, tab3, tab4 = st.tabs(["Build
|
208 |
|
209 |
with tab1:
|
210 |
-
st.header("Build
|
211 |
base_model = st.selectbox(
|
212 |
-
"Select
|
213 |
-
[
|
214 |
-
|
215 |
-
"HuggingFaceTB/SmolLM-360M", # ~720 MB
|
216 |
-
"Qwen/Qwen1.5-0.5B-Chat", # ~1 GB
|
217 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0" # ~2 GB, slightly over but included
|
218 |
-
],
|
219 |
-
help="Choose a tiny, open-source model (<1 GB except TinyLlama)"
|
220 |
)
|
221 |
-
model_name = st.text_input("Model Name", f"
|
222 |
domain = st.text_input("Target Domain", "general")
|
223 |
|
224 |
if st.button("Download Model β¬οΈ"):
|
@@ -228,19 +225,19 @@ with tab1:
|
|
228 |
builder.save_model(config.model_path)
|
229 |
st.session_state['builder'] = builder
|
230 |
st.session_state['model_loaded'] = True
|
231 |
-
st.success(f"Model downloaded and saved to {config.model_path}! π")
|
232 |
st.rerun()
|
233 |
|
234 |
with tab2:
|
235 |
-
st.header("Fine-Tune
|
236 |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
237 |
-
st.warning("Please
|
238 |
else:
|
239 |
if st.button("Generate Sample CSV π"):
|
240 |
sample_data = [
|
241 |
-
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human
|
242 |
-
{"prompt": "Explain machine learning", "response": "Machine learning is
|
243 |
-
{"prompt": "What is a neural network?", "response": "A neural network is a
|
244 |
]
|
245 |
csv_path = f"sft_data_{int(time.time())}.csv"
|
246 |
with open(csv_path, "w", newline="") as f:
|
@@ -248,7 +245,7 @@ with tab2:
|
|
248 |
writer.writeheader()
|
249 |
writer.writerows(sample_data)
|
250 |
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
251 |
-
st.success(f"Sample CSV generated as {csv_path}! β
")
|
252 |
|
253 |
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
254 |
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
|
@@ -263,20 +260,20 @@ with tab2:
|
|
263 |
domain=st.session_state['builder'].config.domain
|
264 |
)
|
265 |
st.session_state['builder'].config = new_config
|
266 |
-
with st.status("Fine-tuning
|
267 |
st.session_state['builder'].fine_tune_sft(csv_path)
|
268 |
st.session_state['builder'].save_model(new_config.model_path)
|
269 |
-
status.update(label="Fine-tuning completed! π", state="complete")
|
270 |
|
271 |
zip_path = f"{new_config.model_path}.zip"
|
272 |
zip_directory(new_config.model_path, zip_path)
|
273 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned
|
274 |
st.rerun()
|
275 |
|
276 |
with tab3:
|
277 |
-
st.header("Test
|
278 |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
279 |
-
st.warning("Please
|
280 |
else:
|
281 |
if st.session_state['builder'].sft_data:
|
282 |
st.write("Testing with SFT Data:")
|
@@ -286,15 +283,15 @@ with tab3:
|
|
286 |
generated = st.session_state['builder'].evaluate(prompt)
|
287 |
st.write(f"**Prompt**: {prompt}")
|
288 |
st.write(f"**Expected**: {expected}")
|
289 |
-
st.write(f"**Generated**: {generated}")
|
290 |
st.write("---")
|
291 |
|
292 |
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
293 |
if st.button("Run Test βΆοΈ"):
|
294 |
result = st.session_state['builder'].evaluate(test_prompt)
|
295 |
-
st.write(f"**Generated Response**: {result}")
|
296 |
|
297 |
-
if st.button("Export
|
298 |
config = st.session_state['builder'].config
|
299 |
app_code = f"""
|
300 |
import streamlit as st
|
@@ -303,47 +300,47 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
303 |
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
304 |
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
305 |
|
306 |
-
st.title("
|
307 |
input_text = st.text_area("Enter prompt")
|
308 |
if st.button("Generate"):
|
309 |
inputs = tokenizer(input_text, return_tensors="pt")
|
310 |
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
311 |
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
312 |
"""
|
313 |
-
with open("
|
314 |
f.write(app_code)
|
315 |
reqs = "streamlit\ntorch\ntransformers\n"
|
316 |
-
with open("
|
317 |
f.write(reqs)
|
318 |
readme = f"""
|
319 |
-
#
|
320 |
|
321 |
## How to run
|
322 |
-
1. Install requirements: `pip install -r
|
323 |
-
2. Run the app: `streamlit run
|
324 |
-
3. Input a prompt and click "Generate".
|
325 |
"""
|
326 |
-
with open("
|
327 |
f.write(readme)
|
328 |
|
329 |
-
st.markdown(get_download_link("
|
330 |
-
st.markdown(get_download_link("
|
331 |
-
st.markdown(get_download_link("
|
332 |
-
st.success("
|
333 |
|
334 |
with tab4:
|
335 |
-
st.header("Agentic RAG
|
336 |
-
st.write("This demo uses tiny
|
337 |
|
338 |
if st.button("Run Agentic RAG Demo π"):
|
339 |
try:
|
340 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
|
341 |
|
342 |
-
# Load
|
343 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
344 |
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
345 |
|
346 |
-
# Define Agentic RAG agent
|
347 |
agent = CodeAgent(
|
348 |
model=model,
|
349 |
tokenizer=tokenizer,
|
@@ -355,16 +352,18 @@ with tab4:
|
|
355 |
)
|
356 |
|
357 |
task = """
|
358 |
-
Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W).
|
359 |
-
refine results
|
360 |
-
(
|
361 |
-
including locations, travel times, and luxury
|
|
|
362 |
"""
|
363 |
-
with st.spinner("
|
364 |
result = agent.run(task)
|
365 |
-
st.write("Agentic RAG
|
366 |
st.write(result)
|
|
|
367 |
except ImportError:
|
368 |
st.error("Please install required packages: `pip install smolagents pandas`")
|
369 |
except Exception as e:
|
370 |
-
st.error(f"Error running demo: {str(e)}")
|
|
|
14 |
from typing import Optional, Tuple
|
15 |
import zipfile
|
16 |
import math
|
17 |
+
from PIL import Image
|
18 |
+
import random
|
19 |
|
20 |
+
# Page Configuration with a Dash of Humor
|
21 |
st.set_page_config(
|
22 |
+
page_title="SFT Tiny Titans π",
|
23 |
page_icon="π€",
|
24 |
layout="wide",
|
25 |
initial_sidebar_state="expanded",
|
26 |
+
menu_items={
|
27 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
28 |
+
'Report a bug': 'https://huggingface.co/spaces/awacke1',
|
29 |
+
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! π"
|
30 |
+
}
|
31 |
)
|
32 |
|
33 |
# Model Configuration Class
|
|
|
56 |
prompt = self.data[idx]["prompt"]
|
57 |
response = self.data[idx]["response"]
|
58 |
|
59 |
+
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length // 2, padding="max_length", truncation=True, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
full_text = f"{prompt} {response}"
|
61 |
+
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
input_ids = prompt_encoding["input_ids"].squeeze()
|
64 |
attention_mask = prompt_encoding["attention_mask"].squeeze()
|
65 |
labels = full_encoding["input_ids"].squeeze()
|
66 |
|
67 |
prompt_len = prompt_encoding["input_ids"].ne(self.tokenizer.pad_token_id).sum().item()
|
68 |
+
labels[:prompt_len] = -100
|
69 |
|
70 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Model Builder Class with Easter Egg Jokes
|
73 |
class ModelBuilder:
|
74 |
def __init__(self):
|
75 |
self.config = None
|
76 |
self.model = None
|
77 |
self.tokenizer = None
|
78 |
self.sft_data = None
|
79 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! π", "Training complete! Time for a binary coffee break. β"]
|
80 |
|
81 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
82 |
+
with st.spinner(f"Loading {model_path}... β³ (Patience, young padawan!)"):
|
83 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
84 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
85 |
if self.tokenizer.pad_token is None:
|
86 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
87 |
if config:
|
88 |
self.config = config
|
89 |
+
st.success(f"Model loaded! π {random.choice(self.jokes)}")
|
90 |
return self
|
91 |
|
92 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
|
|
104 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
105 |
self.model.to(device)
|
106 |
for epoch in range(epochs):
|
107 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ (The AI is lifting weights!)"):
|
108 |
total_loss = 0
|
109 |
for batch in dataloader:
|
110 |
optimizer.zero_grad()
|
|
|
117 |
optimizer.step()
|
118 |
total_loss += loss.item()
|
119 |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
120 |
+
st.success(f"SFT Fine-tuning completed! π {random.choice(self.jokes)}")
|
121 |
return self
|
122 |
|
123 |
def save_model(self, path: str):
|
124 |
+
with st.spinner("Saving model... πΎ (Packing the AIβs suitcase!)"):
|
125 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
126 |
self.model.save_pretrained(path)
|
127 |
self.tokenizer.save_pretrained(path)
|
128 |
+
st.success(f"Model saved at {path}! β
May the force be with it.")
|
129 |
|
130 |
def evaluate(self, prompt: str):
|
131 |
self.model.eval()
|
132 |
with torch.no_grad():
|
133 |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
134 |
+
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
|
137 |
+
# Utility Functions with Wit
|
138 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
139 |
with open(file_path, 'rb') as f:
|
140 |
data = f.read()
|
141 |
b64 = base64.b64encode(data).decode()
|
142 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯ (Grab it before it runs away!)</a>'
|
143 |
|
144 |
def zip_directory(directory_path, zip_path):
|
145 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
|
|
152 |
def get_model_files():
|
153 |
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
|
154 |
|
155 |
+
def get_gallery_files(file_types):
|
156 |
+
files = []
|
157 |
+
for ext in file_types:
|
158 |
+
files.extend(glob.glob(f"*.{ext}"))
|
159 |
+
return sorted(files)
|
160 |
+
|
161 |
# Cargo Travel Time Tool
|
162 |
+
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
|
|
|
|
|
|
|
|
163 |
def to_radians(degrees: float) -> float:
|
164 |
return degrees * (math.pi / 180)
|
165 |
lat1, lon1 = map(to_radians, origin_coords)
|
|
|
175 |
return round(flight_time, 2)
|
176 |
|
177 |
# Main App
|
178 |
+
st.title("SFT Tiny Titans π (Small but Mighty!)")
|
179 |
+
|
180 |
+
# Sidebar with Galleries
|
181 |
+
st.sidebar.header("Galleries & Shenanigans π¨")
|
182 |
+
st.sidebar.subheader("Image Gallery πΈ")
|
183 |
+
img_files = get_gallery_files(["png", "jpg", "jpeg"])
|
184 |
+
if img_files:
|
185 |
+
img_cols = st.sidebar.slider("Image Columns πΈ", 1, 5, 3)
|
186 |
+
cols = st.sidebar.columns(img_cols)
|
187 |
+
for idx, img_file in enumerate(img_files[:img_cols * 2]): # Limit to 2 rows
|
188 |
+
with cols[idx % img_cols]:
|
189 |
+
st.image(Image.open(img_file), caption=f"{img_file} πΌ", use_column_width=True)
|
190 |
+
|
191 |
+
st.sidebar.subheader("CSV Gallery π")
|
192 |
+
csv_files = get_gallery_files(["csv"])
|
193 |
+
if csv_files:
|
194 |
+
for csv_file in csv_files[:5]: # Limit to 5
|
195 |
+
st.sidebar.markdown(get_download_link(csv_file, "text/csv", f"{csv_file} π"), unsafe_allow_html=True)
|
196 |
+
|
197 |
+
st.sidebar.subheader("Model Management ποΈ")
|
198 |
model_dirs = get_model_files()
|
199 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
|
|
200 |
if selected_model != "None" and st.sidebar.button("Load Model π"):
|
201 |
if 'builder' not in st.session_state:
|
202 |
st.session_state['builder'] = ModelBuilder()
|
|
|
206 |
st.rerun()
|
207 |
|
208 |
# Main UI with Tabs
|
209 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan π±", "Fine-Tune Titan π§", "Test Titan π§ͺ", "Agentic RAG Party π"])
|
210 |
|
211 |
with tab1:
|
212 |
+
st.header("Build Tiny Titan π± (Assemble Your Mini-Mecha!)")
|
213 |
base_model = st.selectbox(
|
214 |
+
"Select Tiny Model",
|
215 |
+
["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"],
|
216 |
+
help="Pick a pint-sized powerhouse (<1 GB)! SmolLM-135M (~270 MB), SmolLM-360M (~720 MB), Qwen1.5-0.5B (~1 GB)"
|
|
|
|
|
|
|
|
|
|
|
217 |
)
|
218 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
219 |
domain = st.text_input("Target Domain", "general")
|
220 |
|
221 |
if st.button("Download Model β¬οΈ"):
|
|
|
225 |
builder.save_model(config.model_path)
|
226 |
st.session_state['builder'] = builder
|
227 |
st.session_state['model_loaded'] = True
|
228 |
+
st.success(f"Model downloaded and saved to {config.model_path}! π (Tiny but feisty!)")
|
229 |
st.rerun()
|
230 |
|
231 |
with tab2:
|
232 |
+
st.header("Fine-Tune Titan π§ (Teach Your Titan Some Tricks!)")
|
233 |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
234 |
+
st.warning("Please build or load a Titan first! β οΈ (No Titan, no party!)")
|
235 |
else:
|
236 |
if st.button("Generate Sample CSV π"):
|
237 |
sample_data = [
|
238 |
+
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
|
239 |
+
{"prompt": "Explain machine learning", "response": "Machine learning is AIβs gym where models bulk up on data."},
|
240 |
+
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."},
|
241 |
]
|
242 |
csv_path = f"sft_data_{int(time.time())}.csv"
|
243 |
with open(csv_path, "w", newline="") as f:
|
|
|
245 |
writer.writeheader()
|
246 |
writer.writerows(sample_data)
|
247 |
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
248 |
+
st.success(f"Sample CSV generated as {csv_path}! β
(Fresh from the data oven!)")
|
249 |
|
250 |
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
251 |
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
|
|
|
260 |
domain=st.session_state['builder'].config.domain
|
261 |
)
|
262 |
st.session_state['builder'].config = new_config
|
263 |
+
with st.status("Fine-tuning Titan... β³ (Whipping it into shape!)", expanded=True) as status:
|
264 |
st.session_state['builder'].fine_tune_sft(csv_path)
|
265 |
st.session_state['builder'].save_model(new_config.model_path)
|
266 |
+
status.update(label="Fine-tuning completed! π (Titanβs ready to rumble!)", state="complete")
|
267 |
|
268 |
zip_path = f"{new_config.model_path}.zip"
|
269 |
zip_directory(new_config.model_path, zip_path)
|
270 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
271 |
st.rerun()
|
272 |
|
273 |
with tab3:
|
274 |
+
st.header("Test Titan π§ͺ (Put Your Titan to the Test!)")
|
275 |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
276 |
+
st.warning("Please build or load a Titan first! β οΈ (No Titan, no test drive!)")
|
277 |
else:
|
278 |
if st.session_state['builder'].sft_data:
|
279 |
st.write("Testing with SFT Data:")
|
|
|
283 |
generated = st.session_state['builder'].evaluate(prompt)
|
284 |
st.write(f"**Prompt**: {prompt}")
|
285 |
st.write(f"**Expected**: {expected}")
|
286 |
+
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
|
287 |
st.write("---")
|
288 |
|
289 |
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
290 |
if st.button("Run Test βΆοΈ"):
|
291 |
result = st.session_state['builder'].evaluate(test_prompt)
|
292 |
+
st.write(f"**Generated Response**: {result} (Titanβs wisdom unleashed!)")
|
293 |
|
294 |
+
if st.button("Export Titan Files π¦"):
|
295 |
config = st.session_state['builder'].config
|
296 |
app_code = f"""
|
297 |
import streamlit as st
|
|
|
300 |
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
301 |
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
302 |
|
303 |
+
st.title("Tiny Titan Demo")
|
304 |
input_text = st.text_area("Enter prompt")
|
305 |
if st.button("Generate"):
|
306 |
inputs = tokenizer(input_text, return_tensors="pt")
|
307 |
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
308 |
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
309 |
"""
|
310 |
+
with open("titan_app.py", "w") as f:
|
311 |
f.write(app_code)
|
312 |
reqs = "streamlit\ntorch\ntransformers\n"
|
313 |
+
with open("titan_requirements.txt", "w") as f:
|
314 |
f.write(reqs)
|
315 |
readme = f"""
|
316 |
+
# Tiny Titan Demo
|
317 |
|
318 |
## How to run
|
319 |
+
1. Install requirements: `pip install -r titan_requirements.txt`
|
320 |
+
2. Run the app: `streamlit run titan_app.py`
|
321 |
+
3. Input a prompt and click "Generate". Watch the magic unfold! πͺ
|
322 |
"""
|
323 |
+
with open("titan_README.md", "w") as f:
|
324 |
f.write(readme)
|
325 |
|
326 |
+
st.markdown(get_download_link("titan_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
|
327 |
+
st.markdown(get_download_link("titan_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
|
328 |
+
st.markdown(get_download_link("titan_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
|
329 |
+
st.success("Titan files exported! β
(Ready to conquer the galaxy!)")
|
330 |
|
331 |
with tab4:
|
332 |
+
st.header("Agentic RAG Party π (Party Like Itβs 2099!)")
|
333 |
+
st.write("This demo uses tiny Titans with Agentic RAG to plan a superhero party, powered by DuckDuckGo retrieval!")
|
334 |
|
335 |
if st.button("Run Agentic RAG Demo π"):
|
336 |
try:
|
337 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
|
338 |
|
339 |
+
# Load a tiny model (default to SmolLM-135M for speed)
|
340 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
341 |
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
342 |
|
343 |
+
# Define Agentic RAG agent with a witty twist
|
344 |
agent = CodeAgent(
|
345 |
model=model,
|
346 |
tokenizer=tokenizer,
|
|
|
352 |
)
|
353 |
|
354 |
task = """
|
355 |
+
Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W). Use DuckDuckGo to search for the latest superhero party trends,
|
356 |
+
refine results for luxury elements (decorations, entertainment, catering), and calculate cargo travel times from key locations
|
357 |
+
(New York: 40.7128Β° N, 74.0060Β° W; LA: 34.0522Β° N, 118.2437Β° W; London: 51.5074Β° N, 0.1278Β° W) to Wayne Manor.
|
358 |
+
Synthesize a plan with at least 6 entries in a pandas dataframe, including locations, travel times, and luxury ideas.
|
359 |
+
Add a random superhero catchphrase to each entry for fun!
|
360 |
"""
|
361 |
+
with st.spinner("Planning the ultimate superhero bash... β³ (Calling all caped crusaders!)"):
|
362 |
result = agent.run(task)
|
363 |
+
st.write("Agentic RAG Party Plan:")
|
364 |
st.write(result)
|
365 |
+
st.write("Party on, Wayne! π¦ΈββοΈπ")
|
366 |
except ImportError:
|
367 |
st.error("Please install required packages: `pip install smolagents pandas`")
|
368 |
except Exception as e:
|
369 |
+
st.error(f"Error running demo: {str(e)} (Even Batman has off days!)")
|