sonisphere / mmaudio /runner.py
Phil Sobrepena
initial commit
73ed896
raw
history blame
28.1 kB
"""
trainer.py - wrapper and utility functions for network training
Compute loss, back-prop, update parameters, logging, etc.
"""
import os
from pathlib import Path
from typing import Optional, Union
import torch
import torch.distributed
import torch.optim as optim
from av_bench.evaluate import evaluate
from av_bench.extract import extract
from nitrous_ema import PostHocEMA
from omegaconf import DictConfig
from torch.nn.parallel import DistributedDataParallel as DDP
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import get_my_mmaudio
from mmaudio.model.sequence_config import CONFIG_16K, CONFIG_44K
from mmaudio.model.utils.features_utils import FeaturesUtils
from mmaudio.model.utils.parameter_groups import get_parameter_groups
from mmaudio.model.utils.sample_utils import log_normal_sample
from mmaudio.utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero)
from mmaudio.utils.log_integrator import Integrator
from mmaudio.utils.logger import TensorboardLogger
from mmaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator
from mmaudio.utils.video_joiner import VideoJoiner
class Runner:
def __init__(self,
cfg: DictConfig,
log: TensorboardLogger,
run_path: Union[str, Path],
for_training: bool = True,
latent_mean: Optional[torch.Tensor] = None,
latent_std: Optional[torch.Tensor] = None):
self.exp_id = cfg.exp_id
self.use_amp = cfg.amp
self.enable_grad_scaler = cfg.enable_grad_scaler
self.for_training = for_training
self.cfg = cfg
if cfg.model.endswith('16k'):
self.seq_cfg = CONFIG_16K
mode = '16k'
elif cfg.model.endswith('44k'):
self.seq_cfg = CONFIG_44K
mode = '44k'
else:
raise ValueError(f'Unknown model: {cfg.model}')
self.sample_rate = self.seq_cfg.sampling_rate
self.duration_sec = self.seq_cfg.duration
# setting up the model
empty_string_feat = torch.load('./ext_weights/empty_string.pth', weights_only=True)[0]
self.network = DDP(get_my_mmaudio(cfg.model,
latent_mean=latent_mean,
latent_std=latent_std,
empty_string_feat=empty_string_feat).cuda(),
device_ids=[local_rank],
broadcast_buffers=False)
if cfg.compile:
# NOTE: though train_fn and val_fn are very similar
# (early on they are implemented as a single function)
# keeping them separate and compiling them separately are CRUCIAL for high performance
self.train_fn = torch.compile(self.train_fn)
self.val_fn = torch.compile(self.val_fn)
self.fm = FlowMatching(cfg.sampling.min_sigma,
inference_mode=cfg.sampling.method,
num_steps=cfg.sampling.num_steps)
# ema profile
if for_training and cfg.ema.enable and local_rank == 0:
self.ema = PostHocEMA(self.network.module,
sigma_rels=cfg.ema.sigma_rels,
update_every=cfg.ema.update_every,
checkpoint_every_num_steps=cfg.ema.checkpoint_every,
checkpoint_folder=cfg.ema.checkpoint_folder,
step_size_correction=True).cuda()
self.ema_start = cfg.ema.start
else:
self.ema = None
self.rng = torch.Generator(device='cuda')
self.rng.manual_seed(cfg['seed'] + local_rank)
# setting up feature extractors and VAEs
if mode == '16k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_16k_ckpt'],
bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'],
synchformer_ckpt=cfg['synchformer_ckpt'],
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
elif mode == '44k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_44k_ckpt'],
synchformer_ckpt=cfg['synchformer_ckpt'],
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
self.features = self.features.cuda().eval()
if cfg.compile:
self.features.compile()
# hyperparameters
self.log_normal_sampling_mean = cfg.sampling.mean
self.log_normal_sampling_scale = cfg.sampling.scale
self.null_condition_probability = cfg.null_condition_probability
self.cfg_strength = cfg.cfg_strength
# setting up logging
self.log = log
self.run_path = Path(run_path)
vgg_cfg = cfg.data.VGGSound
if for_training:
self.val_video_joiner = VideoJoiner(vgg_cfg.root, self.run_path / 'val-sampled-videos',
self.sample_rate, self.duration_sec)
else:
self.test_video_joiner = VideoJoiner(vgg_cfg.root,
self.run_path / 'test-sampled-videos',
self.sample_rate, self.duration_sec)
string_if_rank_zero(self.log, 'model_size',
f'{sum([param.nelement() for param in self.network.parameters()])}')
string_if_rank_zero(
self.log, 'number_of_parameters_that_require_gradient: ',
str(
sum([
param.nelement()
for param in filter(lambda p: p.requires_grad, self.network.parameters())
])))
info_if_rank_zero(self.log, 'torch version: ' + torch.__version__)
self.train_integrator = Integrator(self.log, distributed=True)
self.val_integrator = Integrator(self.log, distributed=True)
# setting up optimizer and loss
if for_training:
self.enter_train()
parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0))
self.optimizer = optim.AdamW(parameter_groups,
lr=cfg['learning_rate'],
weight_decay=cfg['weight_decay'],
betas=[0.9, 0.95],
eps=1e-6 if self.use_amp else 1e-8,
fused=True)
if self.enable_grad_scaler:
self.scaler = torch.amp.GradScaler(init_scale=2048)
self.clip_grad_norm = cfg['clip_grad_norm']
# linearly warmup learning rate
linear_warmup_steps = cfg['linear_warmup_steps']
def warmup(currrent_step: int):
return (currrent_step + 1) / (linear_warmup_steps + 1)
warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
# setting up learning rate scheduler
if cfg['lr_schedule'] == 'constant':
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1)
elif cfg['lr_schedule'] == 'poly':
total_num_iter = cfg['iterations']
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer,
lr_lambda=lambda x:
(1 - (x / total_num_iter))**0.9)
elif cfg['lr_schedule'] == 'step':
next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
cfg['lr_schedule_steps'],
cfg['lr_schedule_gamma'])
else:
raise NotImplementedError
self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer,
[warmup_scheduler, next_scheduler],
[linear_warmup_steps])
# Logging info
self.log_text_interval = cfg['log_text_interval']
self.log_extra_interval = cfg['log_extra_interval']
self.save_weights_interval = cfg['save_weights_interval']
self.save_checkpoint_interval = cfg['save_checkpoint_interval']
self.save_copy_iterations = cfg['save_copy_iterations']
self.num_iterations = cfg['num_iterations']
if cfg['debug']:
self.log_text_interval = self.log_extra_interval = 1
# update() is called when we log metrics, within the logger
self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval)
# update() is called every iteration, in this script
self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9)
else:
self.enter_val()
def train_fn(
self,
clip_f: torch.Tensor,
sync_f: torch.Tensor,
text_f: torch.Tensor,
a_mean: torch.Tensor,
a_std: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# sample
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
t = log_normal_sample(x1,
generator=self.rng,
m=self.log_normal_sampling_mean,
s=self.log_normal_sampling_scale)
x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1,
t,
Cs=[clip_f, sync_f, text_f],
generator=self.rng)
# classifier-free training
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_video = (samples < self.null_condition_probability)
clip_f[null_video] = self.network.module.empty_clip_feat
sync_f[null_video] = self.network.module.empty_sync_feat
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
pred_v = self.network(xt, clip_f, sync_f, text_f, t)
loss = self.fm.loss(pred_v, x0, x1)
mean_loss = loss.mean()
return x1, loss, mean_loss, t
def val_fn(
self,
clip_f: torch.Tensor,
sync_f: torch.Tensor,
text_f: torch.Tensor,
x1: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
t = log_normal_sample(x1,
generator=self.rng,
m=self.log_normal_sampling_mean,
s=self.log_normal_sampling_scale)
x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1,
t,
Cs=[clip_f, sync_f, text_f],
generator=self.rng)
# classifier-free training
samples = torch.rand(bs, device=x1.device, generator=self.rng)
# null mask is for when a video is provided but we decided to ignore it
null_video = (samples < self.null_condition_probability)
# complete mask is for when a video is not provided or we decided to ignore it
clip_f[null_video] = self.network.module.empty_clip_feat
sync_f[null_video] = self.network.module.empty_sync_feat
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
pred_v = self.network(xt, clip_f, sync_f, text_f, t)
loss = self.fm.loss(pred_v, x0, x1)
mean_loss = loss.mean()
return loss, mean_loss, t
def train_pass(self, data, it: int = 0):
if not self.for_training:
raise ValueError('train_pass() should not be called when not training.')
self.enter_train()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
clip_f = data['clip_features'].cuda(non_blocking=True)
sync_f = data['sync_features'].cuda(non_blocking=True)
text_f = data['text_features'].cuda(non_blocking=True)
video_exist = data['video_exist'].cuda(non_blocking=True)
text_exist = data['text_exist'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
# these masks are for non-existent data; masking for CFG training is in train_fn
clip_f[~video_exist] = self.network.module.empty_clip_feat
sync_f[~video_exist] = self.network.module.empty_sync_feat
text_f[~text_exist] = self.network.module.empty_string_feat
self.log.data_timer.end()
if it % self.log_extra_interval == 0:
unmasked_clip_f = clip_f.clone()
unmasked_sync_f = sync_f.clone()
unmasked_text_f = text_f.clone()
x1, loss, mean_loss, t = self.train_fn(clip_f, sync_f, text_f, a_mean, a_std)
self.train_integrator.add_dict({'loss': mean_loss})
if it % self.log_text_interval == 0 and it != 0:
self.train_integrator.add_scalar('lr', self.scheduler.get_last_lr()[0])
self.train_integrator.add_binned_tensor('binned_loss', loss, t)
self.train_integrator.finalize('train', it)
self.train_integrator.reset_except_hooks()
# Backward pass
self.optimizer.zero_grad(set_to_none=True)
if self.enable_grad_scaler:
self.scaler.scale(mean_loss).backward()
self.scaler.unscale_(self.optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
else:
mean_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.optimizer.step()
if self.ema is not None and it >= self.ema_start:
self.ema.update()
self.scheduler.step()
self.integrator.add_scalar('grad_norm', grad_norm)
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp,
dtype=torch.bfloat16), torch.inference_mode():
try:
if it % self.log_extra_interval == 0:
# save GT audio
# unnormalize the latents
x1 = self.network.module.unnormalize(x1[0:1])
mel = self.features.decode(x1)
audio = self.features.vocode(mel).cpu()[0] # 1 * num_samples
self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-gt-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
# save audio from sampling
x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng)
clip_f = unmasked_clip_f[0:1]
sync_f = unmasked_sync_f[0:1]
text_f = unmasked_text_f[0:1]
conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
t, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu()[0]
self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
except Exception as e:
self.log.warning(f'Error in extra logging: {e}')
if self.cfg.debug:
raise
# Save network weights and checkpoint if needed
save_copy = it in self.save_copy_iterations
if (it % self.save_weights_interval == 0 and it != 0) or save_copy:
self.save_weights(it)
if it % self.save_checkpoint_interval == 0 and it != 0:
self.save_checkpoint(it, save_copy=save_copy)
self.log.data_timer.start()
@torch.inference_mode()
def validation_pass(self, data, it: int = 0):
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
clip_f = data['clip_features'].cuda(non_blocking=True)
sync_f = data['sync_features'].cuda(non_blocking=True)
text_f = data['text_features'].cuda(non_blocking=True)
video_exist = data['video_exist'].cuda(non_blocking=True)
text_exist = data['text_exist'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
clip_f[~video_exist] = self.network.module.empty_clip_feat
sync_f[~video_exist] = self.network.module.empty_sync_feat
text_f[~text_exist] = self.network.module.empty_string_feat
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn
self.log.data_timer.end()
loss, mean_loss, t = self.val_fn(clip_f.clone(), sync_f.clone(), text_f.clone(), x1)
self.val_integrator.add_binned_tensor('binned_loss', loss, t)
self.val_integrator.add_dict({'loss': mean_loss})
self.log.data_timer.start()
@torch.inference_mode()
def inference_pass(self,
data,
it: int,
data_cfg: DictConfig,
*,
save_eval: bool = True) -> Path:
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
clip_f = data['clip_features'].cuda(non_blocking=True)
sync_f = data['sync_features'].cuda(non_blocking=True)
text_f = data['text_features'].cuda(non_blocking=True)
video_exist = data['video_exist'].cuda(non_blocking=True)
text_exist = data['text_exist'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True) # for the shape only
clip_f[~video_exist] = self.network.module.empty_clip_feat
sync_f[~video_exist] = self.network.module.empty_sync_feat
text_f[~text_exist] = self.network.module.empty_string_feat
# sample
x0 = torch.empty_like(a_mean).normal_(generator=self.rng)
conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
t, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu()
for i in range(audio.shape[0]):
video_id = data['id'][i]
if (not self.for_training) and i == 0:
# save very few videos
self.test_video_joiner.join(video_id, f'{video_id}', audio[i].transpose(0, 1))
if data_cfg.output_subdir is not None:
# validation
if save_eval:
iter_naming = f'{it:09d}'
else:
iter_naming = 'val-cache'
audio_dir = self.log.log_audio(iter_naming,
f'{video_id}',
audio[i],
it=None,
sample_rate=self.sample_rate,
subdir=Path(data_cfg.output_subdir))
if save_eval and i == 0:
self.val_video_joiner.join(video_id, f'{iter_naming}-{video_id}',
audio[i].transpose(0, 1))
else:
# full test set, usually
audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled',
f'{video_id}',
audio[i],
it=None,
sample_rate=self.sample_rate)
return Path(audio_dir)
@torch.inference_mode()
def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]:
with torch.amp.autocast('cuda', enabled=False):
if local_rank == 0:
extract(audio_path=audio_dir,
output_path=audio_dir / 'cache',
device='cuda',
batch_size=32,
audio_length=8)
output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache),
pred_audio_cache=audio_dir / 'cache')
for k, v in output_metrics.items():
# pad k to 10 characters
# pad v to 10 decimal places
self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it)
self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}')
else:
output_metrics = None
return output_metrics
def save_weights(self, it, save_copy=False):
if local_rank != 0:
return
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_{it}.pth'
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
# if last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path)
self.log.info(f'Network weights shadowed to {shadow_path}.')
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
def save_checkpoint(self, it, save_copy=False):
if local_rank != 0:
return
checkpoint = {
'it': it,
'weights': self.network.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'ema': self.ema.state_dict() if self.ema is not None else None,
}
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth'
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
# if ckpt_last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path) # moves the file
self.log.info(f'Checkpoint shadowed to {shadow_path}.')
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
def get_latest_checkpoint_path(self):
ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if not ckpt_path.exists():
info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.')
return None
return ckpt_path
def get_latest_weight_path(self):
weight_path = self.run_path / f'{self.exp_id}_last.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def get_final_ema_weight_path(self):
weight_path = self.run_path / f'{self.exp_id}_ema_final.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def load_checkpoint(self, path):
# This method loads everything and should be used to resume training
map_location = 'cuda:%d' % local_rank
checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
it = checkpoint['it']
weights = checkpoint['weights']
optimizer = checkpoint['optimizer']
scheduler = checkpoint['scheduler']
if self.ema is not None:
self.ema.load_state_dict(checkpoint['ema'])
self.log.info(f'EMA states loaded from step {self.ema.step}')
map_location = 'cuda:%d' % local_rank
self.network.module.load_state_dict(weights)
self.optimizer.load_state_dict(optimizer)
self.scheduler.load_state_dict(scheduler)
self.log.info(f'Global iteration {it} loaded.')
self.log.info('Network weights, optimizer states, and scheduler states loaded.')
return it
def load_weights_in_memory(self, src_dict):
self.network.module.load_weights(src_dict)
self.log.info('Network weights loaded from memory.')
def load_weights(self, path):
# This method loads only the network weight and should be used to load a pretrained model
map_location = 'cuda:%d' % local_rank
src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
self.log.info(f'Importing network weights from {path}...')
self.load_weights_in_memory(src_dict)
def weights(self):
return self.network.module.state_dict()
def enter_train(self):
self.integrator = self.train_integrator
self.network.train()
return self
def enter_val(self):
self.network.eval()
return self