""" trainer.py - wrapper and utility functions for network training Compute loss, back-prop, update parameters, logging, etc. """ import os from pathlib import Path from typing import Optional, Union import torch import torch.distributed import torch.optim as optim from av_bench.evaluate import evaluate from av_bench.extract import extract from nitrous_ema import PostHocEMA from omegaconf import DictConfig from torch.nn.parallel import DistributedDataParallel as DDP from mmaudio.model.flow_matching import FlowMatching from mmaudio.model.networks import get_my_mmaudio from mmaudio.model.sequence_config import CONFIG_16K, CONFIG_44K from mmaudio.model.utils.features_utils import FeaturesUtils from mmaudio.model.utils.parameter_groups import get_parameter_groups from mmaudio.model.utils.sample_utils import log_normal_sample from mmaudio.utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero) from mmaudio.utils.log_integrator import Integrator from mmaudio.utils.logger import TensorboardLogger from mmaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator from mmaudio.utils.video_joiner import VideoJoiner class Runner: def __init__(self, cfg: DictConfig, log: TensorboardLogger, run_path: Union[str, Path], for_training: bool = True, latent_mean: Optional[torch.Tensor] = None, latent_std: Optional[torch.Tensor] = None): self.exp_id = cfg.exp_id self.use_amp = cfg.amp self.enable_grad_scaler = cfg.enable_grad_scaler self.for_training = for_training self.cfg = cfg if cfg.model.endswith('16k'): self.seq_cfg = CONFIG_16K mode = '16k' elif cfg.model.endswith('44k'): self.seq_cfg = CONFIG_44K mode = '44k' else: raise ValueError(f'Unknown model: {cfg.model}') self.sample_rate = self.seq_cfg.sampling_rate self.duration_sec = self.seq_cfg.duration # setting up the model empty_string_feat = torch.load('./ext_weights/empty_string.pth', weights_only=True)[0] self.network = DDP(get_my_mmaudio(cfg.model, latent_mean=latent_mean, latent_std=latent_std, empty_string_feat=empty_string_feat).cuda(), device_ids=[local_rank], broadcast_buffers=False) if cfg.compile: # NOTE: though train_fn and val_fn are very similar # (early on they are implemented as a single function) # keeping them separate and compiling them separately are CRUCIAL for high performance self.train_fn = torch.compile(self.train_fn) self.val_fn = torch.compile(self.val_fn) self.fm = FlowMatching(cfg.sampling.min_sigma, inference_mode=cfg.sampling.method, num_steps=cfg.sampling.num_steps) # ema profile if for_training and cfg.ema.enable and local_rank == 0: self.ema = PostHocEMA(self.network.module, sigma_rels=cfg.ema.sigma_rels, update_every=cfg.ema.update_every, checkpoint_every_num_steps=cfg.ema.checkpoint_every, checkpoint_folder=cfg.ema.checkpoint_folder, step_size_correction=True).cuda() self.ema_start = cfg.ema.start else: self.ema = None self.rng = torch.Generator(device='cuda') self.rng.manual_seed(cfg['seed'] + local_rank) # setting up feature extractors and VAEs if mode == '16k': self.features = FeaturesUtils( tod_vae_ckpt=cfg['vae_16k_ckpt'], bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'], synchformer_ckpt=cfg['synchformer_ckpt'], enable_conditions=True, mode=mode, need_vae_encoder=False, ) elif mode == '44k': self.features = FeaturesUtils( tod_vae_ckpt=cfg['vae_44k_ckpt'], synchformer_ckpt=cfg['synchformer_ckpt'], enable_conditions=True, mode=mode, need_vae_encoder=False, ) self.features = self.features.cuda().eval() if cfg.compile: self.features.compile() # hyperparameters self.log_normal_sampling_mean = cfg.sampling.mean self.log_normal_sampling_scale = cfg.sampling.scale self.null_condition_probability = cfg.null_condition_probability self.cfg_strength = cfg.cfg_strength # setting up logging self.log = log self.run_path = Path(run_path) vgg_cfg = cfg.data.VGGSound if for_training: self.val_video_joiner = VideoJoiner(vgg_cfg.root, self.run_path / 'val-sampled-videos', self.sample_rate, self.duration_sec) else: self.test_video_joiner = VideoJoiner(vgg_cfg.root, self.run_path / 'test-sampled-videos', self.sample_rate, self.duration_sec) string_if_rank_zero(self.log, 'model_size', f'{sum([param.nelement() for param in self.network.parameters()])}') string_if_rank_zero( self.log, 'number_of_parameters_that_require_gradient: ', str( sum([ param.nelement() for param in filter(lambda p: p.requires_grad, self.network.parameters()) ]))) info_if_rank_zero(self.log, 'torch version: ' + torch.__version__) self.train_integrator = Integrator(self.log, distributed=True) self.val_integrator = Integrator(self.log, distributed=True) # setting up optimizer and loss if for_training: self.enter_train() parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0)) self.optimizer = optim.AdamW(parameter_groups, lr=cfg['learning_rate'], weight_decay=cfg['weight_decay'], betas=[0.9, 0.95], eps=1e-6 if self.use_amp else 1e-8, fused=True) if self.enable_grad_scaler: self.scaler = torch.amp.GradScaler(init_scale=2048) self.clip_grad_norm = cfg['clip_grad_norm'] # linearly warmup learning rate linear_warmup_steps = cfg['linear_warmup_steps'] def warmup(currrent_step: int): return (currrent_step + 1) / (linear_warmup_steps + 1) warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup) # setting up learning rate scheduler if cfg['lr_schedule'] == 'constant': next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1) elif cfg['lr_schedule'] == 'poly': total_num_iter = cfg['iterations'] next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda x: (1 - (x / total_num_iter))**0.9) elif cfg['lr_schedule'] == 'step': next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, cfg['lr_schedule_steps'], cfg['lr_schedule_gamma']) else: raise NotImplementedError self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer, [warmup_scheduler, next_scheduler], [linear_warmup_steps]) # Logging info self.log_text_interval = cfg['log_text_interval'] self.log_extra_interval = cfg['log_extra_interval'] self.save_weights_interval = cfg['save_weights_interval'] self.save_checkpoint_interval = cfg['save_checkpoint_interval'] self.save_copy_iterations = cfg['save_copy_iterations'] self.num_iterations = cfg['num_iterations'] if cfg['debug']: self.log_text_interval = self.log_extra_interval = 1 # update() is called when we log metrics, within the logger self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval) # update() is called every iteration, in this script self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9) else: self.enter_val() def train_fn( self, clip_f: torch.Tensor, sync_f: torch.Tensor, text_f: torch.Tensor, a_mean: torch.Tensor, a_std: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: # sample a_randn = torch.empty_like(a_mean).normal_(generator=self.rng) x1 = a_mean + a_std * a_randn bs = x1.shape[0] # batch_size * seq_len * num_channels # normalize the latents x1 = self.network.module.normalize(x1) t = log_normal_sample(x1, generator=self.rng, m=self.log_normal_sampling_mean, s=self.log_normal_sampling_scale) x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1, t, Cs=[clip_f, sync_f, text_f], generator=self.rng) # classifier-free training samples = torch.rand(bs, device=x1.device, generator=self.rng) null_video = (samples < self.null_condition_probability) clip_f[null_video] = self.network.module.empty_clip_feat sync_f[null_video] = self.network.module.empty_sync_feat samples = torch.rand(bs, device=x1.device, generator=self.rng) null_text = (samples < self.null_condition_probability) text_f[null_text] = self.network.module.empty_string_feat pred_v = self.network(xt, clip_f, sync_f, text_f, t) loss = self.fm.loss(pred_v, x0, x1) mean_loss = loss.mean() return x1, loss, mean_loss, t def val_fn( self, clip_f: torch.Tensor, sync_f: torch.Tensor, text_f: torch.Tensor, x1: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: bs = x1.shape[0] # batch_size * seq_len * num_channels # normalize the latents x1 = self.network.module.normalize(x1) t = log_normal_sample(x1, generator=self.rng, m=self.log_normal_sampling_mean, s=self.log_normal_sampling_scale) x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1, t, Cs=[clip_f, sync_f, text_f], generator=self.rng) # classifier-free training samples = torch.rand(bs, device=x1.device, generator=self.rng) # null mask is for when a video is provided but we decided to ignore it null_video = (samples < self.null_condition_probability) # complete mask is for when a video is not provided or we decided to ignore it clip_f[null_video] = self.network.module.empty_clip_feat sync_f[null_video] = self.network.module.empty_sync_feat samples = torch.rand(bs, device=x1.device, generator=self.rng) null_text = (samples < self.null_condition_probability) text_f[null_text] = self.network.module.empty_string_feat pred_v = self.network(xt, clip_f, sync_f, text_f, t) loss = self.fm.loss(pred_v, x0, x1) mean_loss = loss.mean() return loss, mean_loss, t def train_pass(self, data, it: int = 0): if not self.for_training: raise ValueError('train_pass() should not be called when not training.') self.enter_train() with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16): clip_f = data['clip_features'].cuda(non_blocking=True) sync_f = data['sync_features'].cuda(non_blocking=True) text_f = data['text_features'].cuda(non_blocking=True) video_exist = data['video_exist'].cuda(non_blocking=True) text_exist = data['text_exist'].cuda(non_blocking=True) a_mean = data['a_mean'].cuda(non_blocking=True) a_std = data['a_std'].cuda(non_blocking=True) # these masks are for non-existent data; masking for CFG training is in train_fn clip_f[~video_exist] = self.network.module.empty_clip_feat sync_f[~video_exist] = self.network.module.empty_sync_feat text_f[~text_exist] = self.network.module.empty_string_feat self.log.data_timer.end() if it % self.log_extra_interval == 0: unmasked_clip_f = clip_f.clone() unmasked_sync_f = sync_f.clone() unmasked_text_f = text_f.clone() x1, loss, mean_loss, t = self.train_fn(clip_f, sync_f, text_f, a_mean, a_std) self.train_integrator.add_dict({'loss': mean_loss}) if it % self.log_text_interval == 0 and it != 0: self.train_integrator.add_scalar('lr', self.scheduler.get_last_lr()[0]) self.train_integrator.add_binned_tensor('binned_loss', loss, t) self.train_integrator.finalize('train', it) self.train_integrator.reset_except_hooks() # Backward pass self.optimizer.zero_grad(set_to_none=True) if self.enable_grad_scaler: self.scaler.scale(mean_loss).backward() self.scaler.unscale_(self.optimizer) grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(), self.clip_grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: mean_loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(), self.clip_grad_norm) self.optimizer.step() if self.ema is not None and it >= self.ema_start: self.ema.update() self.scheduler.step() self.integrator.add_scalar('grad_norm', grad_norm) self.enter_val() with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16), torch.inference_mode(): try: if it % self.log_extra_interval == 0: # save GT audio # unnormalize the latents x1 = self.network.module.unnormalize(x1[0:1]) mel = self.features.decode(x1) audio = self.features.vocode(mel).cpu()[0] # 1 * num_samples self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it) self.log.log_audio('train', f'audio-gt-r{local_rank}', audio, it, sample_rate=self.sample_rate) # save audio from sampling x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng) clip_f = unmasked_clip_f[0:1] sync_f = unmasked_sync_f[0:1] text_f = unmasked_text_f[0:1] conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f) empty_conditions = self.network.module.get_empty_conditions(x0.shape[0]) cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper( t, x, conditions, empty_conditions, self.cfg_strength) x1_hat = self.fm.to_data(cfg_ode_wrapper, x0) x1_hat = self.network.module.unnormalize(x1_hat) mel = self.features.decode(x1_hat) audio = self.features.vocode(mel).cpu()[0] self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it) self.log.log_audio('train', f'audio-r{local_rank}', audio, it, sample_rate=self.sample_rate) except Exception as e: self.log.warning(f'Error in extra logging: {e}') if self.cfg.debug: raise # Save network weights and checkpoint if needed save_copy = it in self.save_copy_iterations if (it % self.save_weights_interval == 0 and it != 0) or save_copy: self.save_weights(it) if it % self.save_checkpoint_interval == 0 and it != 0: self.save_checkpoint(it, save_copy=save_copy) self.log.data_timer.start() @torch.inference_mode() def validation_pass(self, data, it: int = 0): self.enter_val() with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16): clip_f = data['clip_features'].cuda(non_blocking=True) sync_f = data['sync_features'].cuda(non_blocking=True) text_f = data['text_features'].cuda(non_blocking=True) video_exist = data['video_exist'].cuda(non_blocking=True) text_exist = data['text_exist'].cuda(non_blocking=True) a_mean = data['a_mean'].cuda(non_blocking=True) a_std = data['a_std'].cuda(non_blocking=True) clip_f[~video_exist] = self.network.module.empty_clip_feat sync_f[~video_exist] = self.network.module.empty_sync_feat text_f[~text_exist] = self.network.module.empty_string_feat a_randn = torch.empty_like(a_mean).normal_(generator=self.rng) x1 = a_mean + a_std * a_randn self.log.data_timer.end() loss, mean_loss, t = self.val_fn(clip_f.clone(), sync_f.clone(), text_f.clone(), x1) self.val_integrator.add_binned_tensor('binned_loss', loss, t) self.val_integrator.add_dict({'loss': mean_loss}) self.log.data_timer.start() @torch.inference_mode() def inference_pass(self, data, it: int, data_cfg: DictConfig, *, save_eval: bool = True) -> Path: self.enter_val() with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16): clip_f = data['clip_features'].cuda(non_blocking=True) sync_f = data['sync_features'].cuda(non_blocking=True) text_f = data['text_features'].cuda(non_blocking=True) video_exist = data['video_exist'].cuda(non_blocking=True) text_exist = data['text_exist'].cuda(non_blocking=True) a_mean = data['a_mean'].cuda(non_blocking=True) # for the shape only clip_f[~video_exist] = self.network.module.empty_clip_feat sync_f[~video_exist] = self.network.module.empty_sync_feat text_f[~text_exist] = self.network.module.empty_string_feat # sample x0 = torch.empty_like(a_mean).normal_(generator=self.rng) conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f) empty_conditions = self.network.module.get_empty_conditions(x0.shape[0]) cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper( t, x, conditions, empty_conditions, self.cfg_strength) x1_hat = self.fm.to_data(cfg_ode_wrapper, x0) x1_hat = self.network.module.unnormalize(x1_hat) mel = self.features.decode(x1_hat) audio = self.features.vocode(mel).cpu() for i in range(audio.shape[0]): video_id = data['id'][i] if (not self.for_training) and i == 0: # save very few videos self.test_video_joiner.join(video_id, f'{video_id}', audio[i].transpose(0, 1)) if data_cfg.output_subdir is not None: # validation if save_eval: iter_naming = f'{it:09d}' else: iter_naming = 'val-cache' audio_dir = self.log.log_audio(iter_naming, f'{video_id}', audio[i], it=None, sample_rate=self.sample_rate, subdir=Path(data_cfg.output_subdir)) if save_eval and i == 0: self.val_video_joiner.join(video_id, f'{iter_naming}-{video_id}', audio[i].transpose(0, 1)) else: # full test set, usually audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled', f'{video_id}', audio[i], it=None, sample_rate=self.sample_rate) return Path(audio_dir) @torch.inference_mode() def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]: with torch.amp.autocast('cuda', enabled=False): if local_rank == 0: extract(audio_path=audio_dir, output_path=audio_dir / 'cache', device='cuda', batch_size=32, audio_length=8) output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache), pred_audio_cache=audio_dir / 'cache') for k, v in output_metrics.items(): # pad k to 10 characters # pad v to 10 decimal places self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it) self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}') else: output_metrics = None return output_metrics def save_weights(self, it, save_copy=False): if local_rank != 0: return os.makedirs(self.run_path, exist_ok=True) if save_copy: model_path = self.run_path / f'{self.exp_id}_{it}.pth' torch.save(self.network.module.state_dict(), model_path) self.log.info(f'Network weights saved to {model_path}.') # if last exists, move it to a shadow copy model_path = self.run_path / f'{self.exp_id}_last.pth' if model_path.exists(): shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow')) model_path.replace(shadow_path) self.log.info(f'Network weights shadowed to {shadow_path}.') torch.save(self.network.module.state_dict(), model_path) self.log.info(f'Network weights saved to {model_path}.') def save_checkpoint(self, it, save_copy=False): if local_rank != 0: return checkpoint = { 'it': it, 'weights': self.network.module.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler': self.scheduler.state_dict(), 'ema': self.ema.state_dict() if self.ema is not None else None, } os.makedirs(self.run_path, exist_ok=True) if save_copy: model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth' torch.save(checkpoint, model_path) self.log.info(f'Checkpoint saved to {model_path}.') # if ckpt_last exists, move it to a shadow copy model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth' if model_path.exists(): shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow')) model_path.replace(shadow_path) # moves the file self.log.info(f'Checkpoint shadowed to {shadow_path}.') torch.save(checkpoint, model_path) self.log.info(f'Checkpoint saved to {model_path}.') def get_latest_checkpoint_path(self): ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth' if not ckpt_path.exists(): info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.') return None return ckpt_path def get_latest_weight_path(self): weight_path = self.run_path / f'{self.exp_id}_last.pth' if not weight_path.exists(): self.log.info(f'No weight found at {weight_path}.') return None return weight_path def get_final_ema_weight_path(self): weight_path = self.run_path / f'{self.exp_id}_ema_final.pth' if not weight_path.exists(): self.log.info(f'No weight found at {weight_path}.') return None return weight_path def load_checkpoint(self, path): # This method loads everything and should be used to resume training map_location = 'cuda:%d' % local_rank checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True) it = checkpoint['it'] weights = checkpoint['weights'] optimizer = checkpoint['optimizer'] scheduler = checkpoint['scheduler'] if self.ema is not None: self.ema.load_state_dict(checkpoint['ema']) self.log.info(f'EMA states loaded from step {self.ema.step}') map_location = 'cuda:%d' % local_rank self.network.module.load_state_dict(weights) self.optimizer.load_state_dict(optimizer) self.scheduler.load_state_dict(scheduler) self.log.info(f'Global iteration {it} loaded.') self.log.info('Network weights, optimizer states, and scheduler states loaded.') return it def load_weights_in_memory(self, src_dict): self.network.module.load_weights(src_dict) self.log.info('Network weights loaded from memory.') def load_weights(self, path): # This method loads only the network weight and should be used to load a pretrained model map_location = 'cuda:%d' % local_rank src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True) self.log.info(f'Importing network weights from {path}...') self.load_weights_in_memory(src_dict) def weights(self): return self.network.module.state_dict() def enter_train(self): self.integrator = self.train_integrator self.network.train() return self def enter_val(self): self.network.eval() return self