Spaces:
Running
Running
import logging | |
mpl_logger = logging.getLogger('matplotlib') # must before import matplotlib | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib | |
matplotlib.use("Agg") | |
import numpy as np | |
import matplotlib.pylab as plt | |
def save_figure_to_numpy(fig): | |
# save it to a numpy array. | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
data = np.transpose(data, (2, 0, 1)) | |
return data | |
def plot_waveform_to_numpy(waveform): | |
fig, ax = plt.subplots(figsize=(12, 4)) | |
ax.plot() | |
ax.plot(range(len(waveform)), waveform, | |
linewidth=0.1, alpha=0.7, color='blue') | |
plt.xlabel("Samples") | |
plt.ylabel("Amplitude") | |
plt.ylim(-1, 1) | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = save_figure_to_numpy(fig) | |
plt.close() | |
return data | |
def plot_spectrogram_to_numpy(spectrogram): | |
fig, ax = plt.subplots(figsize=(12, 4)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", | |
interpolation='none') | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = save_figure_to_numpy(fig) | |
plt.close() | |
return data | |