Spaces:
Running
Running
File size: 1,261 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import logging
mpl_logger = logging.getLogger('matplotlib') # must before import matplotlib
mpl_logger.setLevel(logging.WARNING)
import matplotlib
matplotlib.use("Agg")
import numpy as np
import matplotlib.pylab as plt
def save_figure_to_numpy(fig):
# save it to a numpy array.
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
data = np.transpose(data, (2, 0, 1))
return data
def plot_waveform_to_numpy(waveform):
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot()
ax.plot(range(len(waveform)), waveform,
linewidth=0.1, alpha=0.7, color='blue')
plt.xlabel("Samples")
plt.ylabel("Amplitude")
plt.ylim(-1, 1)
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def plot_spectrogram_to_numpy(spectrogram):
fig, ax = plt.subplots(figsize=(12, 4))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
|