added llama-3bi, requirements.txt need to be updates

#9
by RatanPrakash - opened
Files changed (1) hide show
  1. app.py +26 -0
app.py CHANGED
@@ -11,6 +11,22 @@ import dateparser
11
  import os
12
  import matplotlib.pyplot as plt
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Function to get Instagram post details
15
  import instaloader
16
  def get_instagram_post_details(post_url):
@@ -344,6 +360,16 @@ elif app_mode == "Task 1":
344
  st.write(f"Extracting details from {uploaded_image.name}...")
345
  result = ocr.ocr(img_array, cls=True)
346
 
 
 
 
 
 
 
 
 
 
 
347
  # Process the OCR result to extract product name and properties
348
  product_name, product_details = extract_product_info(result)
349
 
 
11
  import os
12
  import matplotlib.pyplot as plt
13
 
14
+ # LLM Integration to extract product details. - Llama-3bi
15
+ import torch
16
+ from transformers import pipeline
17
+
18
+ model_id = "meta-llama/Llama-3.2-3B-Instruct"
19
+ pipe = pipeline(
20
+ "text-generation",
21
+ model=model_id,
22
+ torch_dtype=torch.bfloat16,
23
+ device_map="auto",
24
+ )
25
+
26
+ messages = [
27
+ {"role": "system", "content": """Your task is to get the product details out of the text given. The text given will be raw text from OCR of social media images of products,
28
+ and the goal is to get product details and description so that it can be used for amazon product listing. """},
29
+ ]
30
  # Function to get Instagram post details
31
  import instaloader
32
  def get_instagram_post_details(post_url):
 
360
  st.write(f"Extracting details from {uploaded_image.name}...")
361
  result = ocr.ocr(img_array, cls=True)
362
 
363
+
364
+
365
+ messages.append({"role": "user", "content": result})
366
+ outputs = pipe(
367
+ messages,
368
+ max_new_tokens=256,
369
+ )
370
+ productContent = outputs[0]["generated_text"][-1]
371
+ st.markdown(productContent)
372
+
373
  # Process the OCR result to extract product name and properties
374
  product_name, product_details = extract_product_info(result)
375