|
import argparse |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Variable |
|
from torch.utils.data import DataLoader,Dataset |
|
import torchvision |
|
|
|
from autoencoder import AutoEncoder |
|
from AD_3DRandomPatch import AD_3DRandomPatch |
|
|
|
logging.basicConfig( |
|
format='%(asctime)s %(levelname)s: %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO) |
|
|
|
parser = argparse.ArgumentParser(description="Starter code for AutoEncoder") |
|
|
|
parser.add_argument("--learning_rate", "-lr", default=1e-3, type=float, |
|
help="Learning rate of the optimization. (default=0.01)") |
|
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', |
|
help='momentum') |
|
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, |
|
metavar='W', help='weight decay (default: 1e-4)') |
|
parser.add_argument("--batch_size", default=1, type=int, |
|
help="Batch size for training. (default=1)") |
|
parser.add_argument("--gpuid", default=[0], nargs='+', type=int, |
|
help="ID of gpu device to use. Empty implies cpu usage.") |
|
parser.add_argument("--num_classes", default=2, type=int, |
|
help="Number of classes.") |
|
parser.add_argument("--epochs", default=20, type=int, |
|
help="Epochs through the data. (default=20)") |
|
|
|
def main(options): |
|
|
|
if options.num_classes == 2: |
|
TRAINING_PATH = 'train_2classes.txt' |
|
else: |
|
TRAINING_PATH = 'train.txt' |
|
IMG_PATH = '/Users/waz/JHU/CV-ADNI/ImageNoSkull' |
|
|
|
dset_train = AD_3DRandomPatch(IMG_PATH, TRAINING_PATH) |
|
|
|
train_loader = DataLoader(dset_train, |
|
batch_size = options.batch_size, |
|
shuffle = True, |
|
num_workers = 4, |
|
drop_last = True |
|
) |
|
|
|
sparsity = 0.05 |
|
beta = 0.5 |
|
|
|
mean_square_loss = nn.MSELoss() |
|
kl_div_loss = nn.KLDivLoss() |
|
|
|
use_gpu = len(options.gpuid)>=1 |
|
autoencoder = AutoEncoder() |
|
|
|
|
|
autoencoder = autoencoder.cpu() |
|
|
|
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=options.learning_rate, weight_decay=options.weight_decay) |
|
|
|
train_loss = 0. |
|
for epoch in range(options.epochs): |
|
print("At {0}-th epoch.".format(epoch)) |
|
for i, patches in enumerate(train_loader): |
|
for b, batch in enumerate(patches): |
|
batch = Variable(batch) |
|
output, mean_activitaion = autoencoder(batch) |
|
loss1 = mean_square_loss(output, batch) |
|
loss2 = kl_div_loss(mean_activitaion, Variable(torch.Tensor([sparsity]))) |
|
print "loss1", loss1 |
|
print "loss2", loss2 |
|
loss = loss1 + loss2 |
|
train_loss += loss |
|
logging.info("batch {0} training loss is : {1:.5f}, {1:.5f}".format(b, loss1.data[0], loss2.data[0])) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
train_avg_loss = train_loss/len(train_loader*1000) |
|
print("Average training loss is {0:.5f} at the end of epoch {1}".format(train_avg_loss.data[0], epoch)) |
|
torch.save(model.state_dict(), open("autoencoder_model", 'wb')) |
|
|
|
if __name__ == "__main__": |
|
ret = parser.parse_known_args() |
|
options = ret[0] |
|
if ret[1]: |
|
logging.warning("unknown arguments: {0}".format(parser.parse_known_args()[1])) |
|
main(options) |