|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
import math |
|
|
|
|
|
__all__ = ['AlexNet', 'alexnet'] |
|
|
|
|
|
model_urls = { |
|
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', |
|
} |
|
|
|
|
|
class AlexNet(nn.Module): |
|
|
|
def __init__(self, num_classes=1000): |
|
super(AlexNet, self).__init__() |
|
self.features = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(64, 192, kernel_size=5, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(192, 384, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(384, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
) |
|
self.classifier = nn.Sequential( |
|
nn.Dropout(), |
|
nn.Linear(256 * 6 * 6, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(4096, num_classes), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = x.view(x.size(0), 256 * 6 * 6) |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
def alexnet(pretrained=False, **kwargs): |
|
r"""AlexNet model architecture from the |
|
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = AlexNet(**kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['alexnet'])) |
|
for p in model.features.parameters(): |
|
p.requires_grad = False |
|
|
|
|
|
for p in model.features[10].parameters(): |
|
p.requires_grad = True |
|
|
|
model.classifier.add_module('fc_out', nn.Linear(1000,2)) |
|
model.classifier.add_module('sigmoid', nn.LogSoftmax()) |
|
|
|
stdv = 1.0 / math.sqrt(1000) |
|
for p in model.classifier.fc_out.parameters(): |
|
p.data.uniform_(-stdv, stdv) |
|
|
|
return model |