import torch.nn as nn import torch.utils.model_zoo as model_zoo import math __all__ = ['AlexNet', 'alexnet'] model_urls = { 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', } class AlexNet(nn.Module): def __init__(self, num_classes=1000): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) return x def alexnet(pretrained=False, **kwargs): r"""AlexNet model architecture from the `"One weird trick..." `_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = AlexNet(**kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['alexnet'])) for p in model.features.parameters(): p.requires_grad = False # fine-tune the last convolution layer for p in model.features[10].parameters(): p.requires_grad = True model.classifier.add_module('fc_out', nn.Linear(1000,2)) model.classifier.add_module('sigmoid', nn.LogSoftmax()) stdv = 1.0 / math.sqrt(1000) for p in model.classifier.fc_out.parameters(): p.data.uniform_(-stdv, stdv) return model