Spaces:
Sleeping
Sleeping
import os | |
import json | |
import sqlite3 | |
from datetime import datetime | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain_groq import ChatGroq | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from deep_translator import GoogleTranslator | |
# Directory paths and configurations | |
working_dir = os.path.dirname(os.path.abspath(__file__)) | |
config_data = json.load(open(f"{working_dir}/config.json")) | |
GROQ_API_KEY = config_data["GROQ_API_KEY"] | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
# Set up the database with check_same_thread=False | |
def setup_db(): | |
conn = sqlite3.connect("chat_history.db", check_same_thread=False) # Ensure thread-safe connection | |
cursor = conn.cursor() | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS chat_histories ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
username TEXT, | |
timestamp TEXT, | |
day TEXT, | |
user_message TEXT, | |
assistant_response TEXT | |
) | |
""") | |
conn.commit() | |
return conn # Return the connection | |
# Function to save chat history to SQLite | |
def save_chat_history(conn, username, timestamp, day, user_message, assistant_response): | |
cursor = conn.cursor() | |
cursor.execute(""" | |
INSERT INTO chat_histories (username, timestamp, day, user_message, assistant_response) | |
VALUES (?, ?, ?, ?, ?) | |
""", (username, timestamp, day, user_message, assistant_response)) | |
conn.commit() | |
# Function to set up vectorstore for embeddings | |
def setup_vectorstore(): | |
embeddings = HuggingFaceEmbeddings() | |
vectorstore = Chroma(persist_directory="vector_db_dir", embedding_function=embeddings) | |
return vectorstore | |
# Function to set up the chatbot chain | |
def chat_chain(vectorstore): | |
# Use a currently supported model, such as 'gpt-3.5-turbo' or any other available model. | |
llm = ChatGroq(model="gpt-3.5-turbo", temperature=0) # Replace with a valid supported model | |
retriever = vectorstore.as_retriever() | |
memory = ConversationBufferMemory( | |
llm=llm, | |
output_key="answer", | |
memory_key="chat_history", | |
return_messages=True | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
verbose=True, | |
return_source_documents=True | |
) | |
return chain | |
# Streamlit UI setup | |
st.set_page_config(page_title="Bhagavad Gita Query Assistant", page_icon="π", layout="centered") | |
st.title("π Bhagavad Gita & Yoga Sutras Query Assistant") | |
st.subheader("Ask questions and explore timeless wisdom!") | |
# Initialize session state | |
if "conn" not in st.session_state: | |
st.session_state.conn = setup_db() | |
if "username" not in st.session_state: | |
username = st.text_input("Enter your name to proceed:") | |
if username: | |
with st.spinner("Loading chatbot interface... Please wait."): | |
st.session_state.username = username | |
st.session_state.chat_history = [] # Initialize empty chat history in memory | |
st.session_state.vectorstore = setup_vectorstore() | |
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore) | |
st.success(f"Welcome, {username}! The chatbot interface is ready.") | |
else: | |
username = st.session_state.username | |
# Language options (30 Indian languages) | |
languages = [ | |
"English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada", | |
"Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo", | |
"Sindhi", "Assamese", "Konkani", "Maithili", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi" | |
] | |
# Main interface | |
if "username" in st.session_state: | |
st.subheader(f"Hello {username}, start your query below!") | |
# Language selection for translation | |
selected_language = st.selectbox("Select the output language", languages, index=languages.index("English")) | |
# Input options for the user to type or use voice input | |
input_option = st.radio("Choose Input Method", ("Type your question",)) | |
# Container to hold the chat interface (for scrolling) | |
chat_container = st.container() | |
with chat_container: | |
if "chat_history" in st.session_state: | |
for message in st.session_state.chat_history: | |
if message['role'] == 'user': | |
with st.chat_message("user"): | |
st.markdown(message["content"]) | |
elif message['role'] == 'assistant': | |
with st.chat_message("assistant"): | |
st.markdown(message["content"]) | |
# User input section for typing | |
user_query = None # Initialize user_query as None | |
if input_option == "Type your question": | |
user_query = st.chat_input("Ask AI about Bhagavad Gita or Yoga Sutras:") # Chat input for typing | |
# If user input is provided, process the query | |
if user_query: | |
with st.spinner("Processing your query... Please wait."): | |
# Save user input to chat history in memory | |
st.session_state.chat_history.append({"role": "user", "content": user_query}) | |
# Display user's message in chatbot (for UI display) | |
with st.chat_message("user"): | |
st.markdown(user_query) | |
# Get assistant's response from the chain | |
with st.chat_message("assistant"): | |
response = st.session_state.conversational_chain({"question": user_query}) | |
assistant_response = response["answer"] | |
# Save assistant's response to chat history in memory | |
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) | |
# Format output in JSON | |
formatted_output = { | |
"book": "Bhagavad Gita", # or "PYS" for Yoga Sutras | |
"chapter_number": "2", # Example, replace with actual value from response | |
"verse_number": "47", # Example, replace with actual value from response | |
"shloka": "Yoga karmasu kaushalam", # Example, replace with actual shloka from response | |
"summary": assistant_response, | |
"commentary": "This is a commentary on the shloka.", # Replace with actual commentary | |
} | |
# Save the chat history to the database (SQLite) | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
day = datetime.now().strftime("%A") # Get the day of the week (e.g., Monday) | |
save_chat_history(st.session_state.conn, username, timestamp, day, user_query, assistant_response) | |
# Translate the assistant's response based on selected language | |
translator = GoogleTranslator(source="en", target=selected_language.lower()) | |
translated_response = translator.translate(assistant_response) | |
# Display translated response | |
st.markdown(f"**Translated Answer ({selected_language}):** {translated_response}") | |
# Display the formatted output | |
st.json(formatted_output) | |
# Clear the input field after the query is processed | |
st.session_state.user_input = "" # Reset the input field for next use | |