import os import json import sqlite3 from datetime import datetime import streamlit as st from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from deep_translator import GoogleTranslator # Directory paths and configurations working_dir = os.path.dirname(os.path.abspath(__file__)) config_data = json.load(open(f"{working_dir}/config.json")) GROQ_API_KEY = config_data["GROQ_API_KEY"] os.environ["GROQ_API_KEY"] = GROQ_API_KEY # Set up the database with check_same_thread=False def setup_db(): conn = sqlite3.connect("chat_history.db", check_same_thread=False) # Ensure thread-safe connection cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS chat_histories ( id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, timestamp TEXT, day TEXT, user_message TEXT, assistant_response TEXT ) """) conn.commit() return conn # Return the connection # Function to save chat history to SQLite def save_chat_history(conn, username, timestamp, day, user_message, assistant_response): cursor = conn.cursor() cursor.execute(""" INSERT INTO chat_histories (username, timestamp, day, user_message, assistant_response) VALUES (?, ?, ?, ?, ?) """, (username, timestamp, day, user_message, assistant_response)) conn.commit() # Function to set up vectorstore for embeddings def setup_vectorstore(): embeddings = HuggingFaceEmbeddings() vectorstore = Chroma(persist_directory="vector_db_dir", embedding_function=embeddings) return vectorstore # Function to set up the chatbot chain def chat_chain(vectorstore): # Use a currently supported model, such as 'gpt-3.5-turbo' or any other available model. llm = ChatGroq(model="gpt-3.5-turbo", temperature=0) # Replace with a valid supported model retriever = vectorstore.as_retriever() memory = ConversationBufferMemory( llm=llm, output_key="answer", memory_key="chat_history", return_messages=True ) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, chain_type="stuff", memory=memory, verbose=True, return_source_documents=True ) return chain # Streamlit UI setup st.set_page_config(page_title="Bhagavad Gita Query Assistant", page_icon="📚", layout="centered") st.title("📚 Bhagavad Gita & Yoga Sutras Query Assistant") st.subheader("Ask questions and explore timeless wisdom!") # Initialize session state if "conn" not in st.session_state: st.session_state.conn = setup_db() if "username" not in st.session_state: username = st.text_input("Enter your name to proceed:") if username: with st.spinner("Loading chatbot interface... Please wait."): st.session_state.username = username st.session_state.chat_history = [] # Initialize empty chat history in memory st.session_state.vectorstore = setup_vectorstore() st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore) st.success(f"Welcome, {username}! The chatbot interface is ready.") else: username = st.session_state.username # Language options (30 Indian languages) languages = [ "English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada", "Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo", "Sindhi", "Assamese", "Konkani", "Maithili", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi" ] # Main interface if "username" in st.session_state: st.subheader(f"Hello {username}, start your query below!") # Language selection for translation selected_language = st.selectbox("Select the output language", languages, index=languages.index("English")) # Input options for the user to type or use voice input input_option = st.radio("Choose Input Method", ("Type your question",)) # Container to hold the chat interface (for scrolling) chat_container = st.container() with chat_container: if "chat_history" in st.session_state: for message in st.session_state.chat_history: if message['role'] == 'user': with st.chat_message("user"): st.markdown(message["content"]) elif message['role'] == 'assistant': with st.chat_message("assistant"): st.markdown(message["content"]) # User input section for typing user_query = None # Initialize user_query as None if input_option == "Type your question": user_query = st.chat_input("Ask AI about Bhagavad Gita or Yoga Sutras:") # Chat input for typing # If user input is provided, process the query if user_query: with st.spinner("Processing your query... Please wait."): # Save user input to chat history in memory st.session_state.chat_history.append({"role": "user", "content": user_query}) # Display user's message in chatbot (for UI display) with st.chat_message("user"): st.markdown(user_query) # Get assistant's response from the chain with st.chat_message("assistant"): response = st.session_state.conversational_chain({"question": user_query}) assistant_response = response["answer"] # Save assistant's response to chat history in memory st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) # Format output in JSON formatted_output = { "book": "Bhagavad Gita", # or "PYS" for Yoga Sutras "chapter_number": "2", # Example, replace with actual value from response "verse_number": "47", # Example, replace with actual value from response "shloka": "Yoga karmasu kaushalam", # Example, replace with actual shloka from response "summary": assistant_response, "commentary": "This is a commentary on the shloka.", # Replace with actual commentary } # Save the chat history to the database (SQLite) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") day = datetime.now().strftime("%A") # Get the day of the week (e.g., Monday) save_chat_history(st.session_state.conn, username, timestamp, day, user_query, assistant_response) # Translate the assistant's response based on selected language translator = GoogleTranslator(source="en", target=selected_language.lower()) translated_response = translator.translate(assistant_response) # Display translated response st.markdown(f"**Translated Answer ({selected_language}):** {translated_response}") # Display the formatted output st.json(formatted_output) # Clear the input field after the query is processed st.session_state.user_input = "" # Reset the input field for next use