File size: 10,027 Bytes
5be7da8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import torch
import torch.nn as nn
from sklearn.preprocessing import StandardScaler
from typing import Dict, List, Optional, Tuple, Union
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')

# Constants
COMPANIES = {
    'Apple (AAPL)': 'AAPL',
    'Microsoft (MSFT)': 'MSFT',
    'Amazon (AMZN)': 'AMZN',
    'Google (GOOGL)': 'GOOGL',
    'Meta (META)': 'META',
    'Tesla (TSLA)': 'TSLA',
    'NVIDIA (NVDA)': 'NVDA',
    'JPMorgan Chase (JPM)': 'JPM',
    'Johnson & Johnson (JNJ)': 'JNJ',
    'Walmart (WMT)': 'WMT',
    'Visa (V)': 'V',
    'Mastercard (MA)': 'MA',
    'Procter & Gamble (PG)': 'PG',
    'UnitedHealth (UNH)': 'UNH',
    'Home Depot (HD)': 'HD',
    'Bank of America (BAC)': 'BAC',
    'Coca-Cola (KO)': 'KO',
    'Pfizer (PFE)': 'PFE',
    'Disney (DIS)': 'DIS',
    'Netflix (NFLX)': 'NFLX'
}

class TimeSeriesPreprocessor:
    def __init__(self):
        self.scaler = StandardScaler()
        
    def process(self, data: pd.DataFrame) -> Tuple[pd.DataFrame, StandardScaler]:
        processed = data.copy()
        
        # Calculate returns and volatility
        processed['Returns'] = processed['Close'].pct_change()
        processed['Volatility'] = processed['Returns'].rolling(window=20).std()
        
        # Technical indicators
        processed['SMA_20'] = processed['Close'].rolling(window=20).mean()
        processed['SMA_50'] = processed['Close'].rolling(window=50).mean()
        processed['RSI'] = self.calculate_rsi(processed['Close'])
        
        # MACD
        exp1 = processed['Close'].ewm(span=12, adjust=False).mean()
        exp2 = processed['Close'].ewm(span=26, adjust=False).mean()
        processed['MACD'] = exp1 - exp2
        processed['Signal_Line'] = processed['MACD'].ewm(span=9, adjust=False).mean()
        
        # Bollinger Bands
        processed['BB_middle'] = processed['Close'].rolling(window=20).mean()
        processed['BB_upper'] = processed['BB_middle'] + 2 * processed['Close'].rolling(window=20).std()
        processed['BB_lower'] = processed['BB_middle'] - 2 * processed['Close'].rolling(window=20).std()
        
        # Handle missing values
        processed = processed.fillna(method='ffill').fillna(method='bfill')
        
        # Scale numerical features
        numerical_cols = ['Close', 'Volume', 'Returns', 'Volatility']
        processed[numerical_cols] = self.scaler.fit_transform(processed[numerical_cols])
        
        return processed, self.scaler
    
    @staticmethod
    def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
        delta = prices.diff()
        gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
        loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
        rs = gain / loss
        return 100 - (100 / (1 + rs))

class AgenticRAGFramework:
    def __init__(self):
        self.preprocessor = TimeSeriesPreprocessor()
    
    def analyze(self, data: pd.DataFrame) -> Dict:
        processed_data, scaler = self.preprocessor.process(data)
        
        analysis = {
            'processed_data': processed_data,
            'trend': self.analyze_trend(processed_data),
            'technical': self.analyze_technical(processed_data),
            'volatility': self.analyze_volatility(processed_data),
            'summary': self.generate_summary(processed_data)
        }
        
        return analysis
    
    def analyze_trend(self, data: pd.DataFrame) -> Dict:
        sma_20 = data['SMA_20'].iloc[-1]
        sma_50 = data['SMA_50'].iloc[-1]
        
        trend = {
            'direction': 'Bullish' if sma_20 > sma_50 else 'Bearish',
            'strength': abs(sma_20 - sma_50) / sma_50,
            'sma_20': sma_20,
            'sma_50': sma_50
        }
        
        return trend
    
    def analyze_technical(self, data: pd.DataFrame) -> Dict:
        technical = {
            'rsi': data['RSI'].iloc[-1],
            'macd': data['MACD'].iloc[-1],
            'signal_line': data['Signal_Line'].iloc[-1],
            'bb_position': (data['Close'].iloc[-1] - data['BB_lower'].iloc[-1]) / 
                          (data['BB_upper'].iloc[-1] - data['BB_lower'].iloc[-1])
        }
        
        return technical
    
    def analyze_volatility(self, data: pd.DataFrame) -> Dict:
        volatility = {
            'current': data['Volatility'].iloc[-1],
            'avg_20d': data['Volatility'].rolling(20).mean().iloc[-1],
            'trend': 'Increasing' if data['Volatility'].iloc[-1] > data['Volatility'].iloc[-2] else 'Decreasing'
        }
        
        return volatility
    
    def generate_summary(self, data: pd.DataFrame) -> str:
        latest_close = data['Close'].iloc[-1]
        prev_close = data['Close'].iloc[-2]
        daily_return = (latest_close - prev_close) / prev_close * 100
        
        rsi = data['RSI'].iloc[-1]
        volatility = data['Volatility'].iloc[-1]
        
        summary = f"""Market Analysis Summary:
        
• Price Action: The stock {'increased' if daily_return > 0 else 'decreased'} by {abs(daily_return):.2f}% in the last session.

• Technical Indicators:
  - RSI is at {rsi:.2f} indicating {'overbought' if rsi > 70 else 'oversold' if rsi < 30 else 'neutral'} conditions
  - Current volatility is {volatility:.2f} which is {'high' if volatility > 0.5 else 'moderate' if volatility > 0.2 else 'low'}
  
• Market Signals:
  - MACD: {'Bullish' if data['MACD'].iloc[-1] > data['Signal_Line'].iloc[-1] else 'Bearish'} crossover
  - Bollinger Bands: Price is {
    'near upper band (potential resistance)' if data['BB_position'].iloc[-1] > 0.8
    else 'near lower band (potential support)' if data['BB_position'].iloc[-1] < 0.2
    else 'in middle range'}
        """
        
        return summary

def create_analysis_plots(data: pd.DataFrame, analysis: Dict) -> List[go.Figure]:
    # Price and Technical Indicators Plot
    fig1 = make_subplots(rows=2, cols=1, shared_xaxes=True,
                        subplot_titles=('Price and Technical Indicators', 'Volume'),
                        row_heights=[0.7, 0.3])
    
    # Price and SMAs
    fig1.add_trace(go.Scatter(x=data.index, y=data['Close'],
                             name='Close Price', line=dict(color='blue')), row=1, col=1)
    fig1.add_trace(go.Scatter(x=data.index, y=data['SMA_20'],
                             name='SMA 20', line=dict(color='orange', dash='dash')), row=1, col=1)
    fig1.add_trace(go.Scatter(x=data.index, y=data['SMA_50'],
                             name='SMA 50', line=dict(color='green', dash='dash')), row=1, col=1)
    
    # Volume
    fig1.add_trace(go.Bar(x=data.index, y=data['Volume'],
                         name='Volume', marker_color='lightblue'), row=2, col=1)
    
    fig1.update_layout(height=600, title_text="Price Analysis")
    
    # Technical Analysis Plot
    fig2 = make_subplots(rows=3, cols=1, shared_xaxes=True,
                        subplot_titles=('RSI', 'MACD', 'Bollinger Bands'),
                        row_heights=[0.33, 0.33, 0.33])
    
    # RSI
    fig2.add_trace(go.Scatter(x=data.index, y=data['RSI'],
                             name='RSI', line=dict(color='purple')), row=1, col=1)
    fig2.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
    fig2.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
    
    # MACD
    fig2.add_trace(go.Scatter(x=data.index, y=data['MACD'],
                             name='MACD', line=dict(color='blue')), row=2, col=1)
    fig2.add_trace(go.Scatter(x=data.index, y=data['Signal_Line'],
                             name='Signal Line', line=dict(color='red')), row=2, col=1)
    
    # Bollinger Bands
    fig2.add_trace(go.Scatter(x=data.index, y=data['BB_upper'],
                             name='Upper BB', line=dict(color='gray', dash='dash')), row=3, col=1)
    fig2.add_trace(go.Scatter(x=data.index, y=data['BB_middle'],
                             name='Middle BB', line=dict(color='blue', dash='dash')), row=3, col=1)
    fig2.add_trace(go.Scatter(x=data.index, y=data['BB_lower'],
                             name='Lower BB', line=dict(color='gray', dash='dash')), row=3, col=1)
    
    fig2.update_layout(height=800, title_text="Technical Analysis")
    
    return [fig1, fig2]

def analyze_stock(company: str, lookback_days: int) -> Tuple[str, List[go.Figure]]:
    symbol = COMPANIES[company]
    end_date = datetime.now()
    start_date = end_date - timedelta(days=lookback_days)
    
    # Download data
    data = yf.download(symbol, start=start_date, end=end_date)
    
    if len(data) == 0:
        return "No data available for the selected period.", []
    
    # Analyze data
    framework = AgenticRAGFramework()
    analysis = framework.analyze(data)
    
    # Create plots
    plots = create_analysis_plots(data, analysis)
    
    return analysis['summary'], plots

def create_gradio_interface():
    with gr.Blocks() as interface:
        gr.Markdown("# Stock Market Analysis with Agentic RAG")
        
        with gr.Row():
            company = gr.Dropdown(choices=list(COMPANIES.keys()), label="Select Company")
            lookback = gr.Slider(minimum=30, maximum=365, value=180, step=1, label="Lookback Period (days)")
        
        analyze_btn = gr.Button("Analyze")
        
        with gr.Row():
            summary = gr.Textbox(label="Analysis Summary", lines=10)
        
        with gr.Row():
            plot1 = gr.Plot(label="Price Analysis")
            plot2 = gr.Plot(label="Technical Analysis")
        
        analyze_btn.click(
            fn=analyze_stock,
            inputs=[company, lookback],
            outputs=[summary, plot1, plot2]
        )
    
    return interface

if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(share=True)