File size: 3,281 Bytes
674526c 4cedea7 674526c 4cedea7 674526c 4cedea7 674526c 4cedea7 674526c 4cedea7 674526c 4cedea7 674526c 4cedea7 674526c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import streamlit as st
from PIL import Image
import requests
# Dummy functions to simulate the behavior of the removed pipelines
def summarize(text):
return "This is a summary of the text."
def detect_age(image):
return "Age: 25-30"
def classify_image(image, candidate_labels):
return [{"label": label, "score": 0.5} for label in candidate_labels]
def detect_emotion(text):
return "joy"
def translate(text):
return "Ceci est une traduction."
st.title("NLP APP")
option = st.sidebar.selectbox(
"Choose a task",
("Summarization", "Age Detection", "Emotion Detection", "Image Classification", "Translation")
)
if option == "Summarization":
st.title("Text Summarization")
text = st.text_area("Enter text to summarize")
if st.button("Summarize"):
if text:
st.write("Summary:", summarize(text))
else:
st.write("Please enter text to summarize.")
elif option == "Age Detection":
st.title("Welcome to age detection")
uploaded_files = st.file_uploader("Choose an image file", type="jpg")
if uploaded_files is not None:
image = Image.open(uploaded_files)
st.write(detect_age(image))
elif option == "Image Classification":
st.title("Welcome to object detection")
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
text = st.text_area("Enter possible class names (comma-separated)")
if st.button("Submit"):
if uploaded_file is not None and text:
candidate_labels = [t.strip() for t in text.split(',')]
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
classification_result = classify_image(image, candidate_labels)
for result in classification_result:
st.write(f"Label: {result['label']}, Score: {result['score']}")
else:
st.write("Please upload an image file and enter class names.")
elif option == "Emotion Detection":
st.title("Detect your emotion")
text = st.text_area("Enter your text")
if st.button("Submit"):
if text:
emotion = detect_emotion(text)
if emotion == "sadness":
st.write("Emotion : ", emotion, "π’")
elif emotion == "joy":
st.write("Emotion : ", emotion, "π")
elif emotion == "fear":
st.write("Emotion : ", emotion, "π¨")
elif emotion == "anger":
st.write("Emotion : ", emotion, "π‘")
elif emotion == "neutral":
st.write("Emotion : ", emotion, "π")
elif emotion == "disgust":
st.write("Emotion : ", emotion, "π€’")
elif emotion == "surprise":
st.write("Emotion : ", emotion, "π²")
else:
st.write("Please enter text.")
elif option == "Translation":
st.title("Text Translation")
text = st.text_area("Enter text to translate from English to French")
if st.button("Translate"):
if text:
translation = translate(text)
st.write("Translation:", translation)
else:
st.write("Please enter text to translate.")
else:
st.title("None")
|