Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,22 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
import streamlit as st
|
5 |
-
from transformers import pipeline
|
6 |
from PIL import Image
|
7 |
import requests
|
8 |
-
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
st.title("NLP APP")
|
18 |
option = st.sidebar.selectbox(
|
@@ -25,15 +29,15 @@ if option == "Summarization":
|
|
25 |
text = st.text_area("Enter text to summarize")
|
26 |
if st.button("Summarize"):
|
27 |
if text:
|
28 |
-
st.write("Summary:",
|
29 |
else:
|
30 |
st.write("Please enter text to summarize.")
|
31 |
elif option == "Age Detection":
|
32 |
st.title("Welcome to age detection")
|
33 |
-
uploaded_files = st.file_uploader("Choose
|
34 |
if uploaded_files is not None:
|
35 |
image = Image.open(uploaded_files)
|
36 |
-
st.write(
|
37 |
elif option == "Image Classification":
|
38 |
st.title("Welcome to object detection")
|
39 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
@@ -43,7 +47,7 @@ elif option == "Image Classification":
|
|
43 |
candidate_labels = [t.strip() for t in text.split(',')]
|
44 |
image = Image.open(uploaded_file)
|
45 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
46 |
-
classification_result =
|
47 |
for result in classification_result:
|
48 |
st.write(f"Label: {result['label']}, Score: {result['score']}")
|
49 |
else:
|
@@ -53,7 +57,7 @@ elif option == "Emotion Detection":
|
|
53 |
text = st.text_area("Enter your text")
|
54 |
if st.button("Submit"):
|
55 |
if text:
|
56 |
-
emotion =
|
57 |
if emotion == "sadness":
|
58 |
st.write("Emotion : ", emotion, "😢")
|
59 |
elif emotion == "joy":
|
@@ -75,7 +79,7 @@ elif option == "Translation":
|
|
75 |
text = st.text_area("Enter text to translate from English to French")
|
76 |
if st.button("Translate"):
|
77 |
if text:
|
78 |
-
translation =
|
79 |
st.write("Translation:", translation)
|
80 |
else:
|
81 |
st.write("Please enter text to translate.")
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
import requests
|
|
|
4 |
|
5 |
+
# Dummy functions to simulate the behavior of the removed pipelines
|
6 |
+
def summarize(text):
|
7 |
+
return "This is a summary of the text."
|
8 |
+
|
9 |
+
def detect_age(image):
|
10 |
+
return "Age: 25-30"
|
11 |
+
|
12 |
+
def classify_image(image, candidate_labels):
|
13 |
+
return [{"label": label, "score": 0.5} for label in candidate_labels]
|
14 |
+
|
15 |
+
def detect_emotion(text):
|
16 |
+
return "joy"
|
17 |
+
|
18 |
+
def translate(text):
|
19 |
+
return "Ceci est une traduction."
|
20 |
|
21 |
st.title("NLP APP")
|
22 |
option = st.sidebar.selectbox(
|
|
|
29 |
text = st.text_area("Enter text to summarize")
|
30 |
if st.button("Summarize"):
|
31 |
if text:
|
32 |
+
st.write("Summary:", summarize(text))
|
33 |
else:
|
34 |
st.write("Please enter text to summarize.")
|
35 |
elif option == "Age Detection":
|
36 |
st.title("Welcome to age detection")
|
37 |
+
uploaded_files = st.file_uploader("Choose an image file", type="jpg")
|
38 |
if uploaded_files is not None:
|
39 |
image = Image.open(uploaded_files)
|
40 |
+
st.write(detect_age(image))
|
41 |
elif option == "Image Classification":
|
42 |
st.title("Welcome to object detection")
|
43 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
|
47 |
candidate_labels = [t.strip() for t in text.split(',')]
|
48 |
image = Image.open(uploaded_file)
|
49 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
50 |
+
classification_result = classify_image(image, candidate_labels)
|
51 |
for result in classification_result:
|
52 |
st.write(f"Label: {result['label']}, Score: {result['score']}")
|
53 |
else:
|
|
|
57 |
text = st.text_area("Enter your text")
|
58 |
if st.button("Submit"):
|
59 |
if text:
|
60 |
+
emotion = detect_emotion(text)
|
61 |
if emotion == "sadness":
|
62 |
st.write("Emotion : ", emotion, "😢")
|
63 |
elif emotion == "joy":
|
|
|
79 |
text = st.text_area("Enter text to translate from English to French")
|
80 |
if st.button("Translate"):
|
81 |
if text:
|
82 |
+
translation = translate(text)
|
83 |
st.write("Translation:", translation)
|
84 |
else:
|
85 |
st.write("Please enter text to translate.")
|