ari7cr's picture
Update app.py
1c1b8b9 verified
import gradio as gr
from smolagents import CodeAgent, HfApiModel
# Define system prompts for the agents
patient_system_prompt = """
You are a patient describing your symptoms to a physician. You are here to talk about a health issue.
Be concise and provide relevant information about your symptoms.
"""
physician_system_prompt = """
You are a physician responding to a patient's symptoms.
Ask relevant questions to understand the patient's condition and provide appropriate advice.
"""
# Load the models for the agents
patient_model = HfApiModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct")
physician_model = HfApiModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct")
# Initialize the agents
patient_agent = CodeAgent(
model=patient_model,
system_prompt=patient_system_prompt,
planning_interval=1 # Allow the agent to plan after each turn
)
physician_agent = CodeAgent(
model=physician_model,
system_prompt=physician_system_prompt,
planning_interval=1 # Allow the agent to plan after each turn
)
def generate_conversation(topic, turns):
conversation = []
total_tokens = 0
physician_tokens = 0
patient_tokens = 0
# Initial prompt for the patient
patient_input = f"I'm here to talk about {topic}."
print(f"Patient Initial Input: {patient_input}") # Debugging
patient_response = patient_agent.run(patient_input)
print(f"Patient Response: {patient_response}") # Debugging
patient_tokens += len(patient_response.split())
conversation.append({"role": "patient", "message": patient_response, "tokens": len(patient_response.split())})
for turn in range(turns):
# Physician's turn
print(f"Physician Turn {turn} Prompt: {patient_response}") # Debugging
physician_response = physician_agent.run(patient_response)
print(f"Physician Response: {physician_response}") # Debugging
physician_tokens += len(physician_response.split())
conversation.append({"role": "physician", "message": physician_response, "tokens": len(physician_response.split())})
# Patient's turn
print(f"Patient Turn {turn} Prompt: {physician_response}") # Debugging
patient_response = patient_agent.run(physician_response)
print(f"Patient Response: {patient_response}") # Debugging
patient_tokens += len(patient_response.split())
conversation.append({"role": "patient", "message": patient_response, "tokens": len(patient_response.split())})
# Summarize the conversation
summary = {
"total_tokens": physician_tokens + patient_tokens,
"physician_tokens": physician_tokens,
"patient_tokens": patient_tokens
}
return conversation, summary
def app_interface(topic, turns):
conversation, summary = generate_conversation(topic, turns)
output = {
"input": {"topic": topic, "turns": turns},
"conversation": conversation,
"summary": summary
}
return output
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## πŸ‘¨β€βš•οΈ Synthetic Data Generation: Physician-Patient Role-Play πŸ‘€")
with gr.Row():
topic_input = gr.Textbox(label="Enter Disease/Topic", placeholder="e.g., chest pain")
turns_input = gr.Number(label="Number of Turns", value=1) # Default to 1 turn for debugging
submit_button = gr.Button("πŸš€ Start Interaction")
output_json = gr.JSON(label="Generated Conversation")
# Download button for the conversation
download_button = gr.Button("πŸ“₯ Download Conversation")
download_button.click(
fn=lambda data: gr.File.download(data),
inputs=output_json,
outputs=gr.File()
)
submit_button.click(
fn=app_interface,
inputs=[topic_input, turns_input],
outputs=output_json
)
demo.launch()