Spaces:
Runtime error
Runtime error
File size: 3,829 Bytes
56a8be9 1c1b8b9 56a8be9 1c1b8b9 56a8be9 1c1b8b9 2cf432b 1c1b8b9 2d69dd7 56a8be9 1c1b8b9 8b369df 1c1b8b9 a5f7bd5 56a8be9 2cf432b 1c1b8b9 a5f7bd5 56a8be9 2cf432b 1c1b8b9 a5f7bd5 56a8be9 a5f7bd5 56a8be9 1c1b8b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
from smolagents import CodeAgent, HfApiModel
# Define system prompts for the agents
patient_system_prompt = """
You are a patient describing your symptoms to a physician. You are here to talk about a health issue.
Be concise and provide relevant information about your symptoms.
"""
physician_system_prompt = """
You are a physician responding to a patient's symptoms.
Ask relevant questions to understand the patient's condition and provide appropriate advice.
"""
# Load the models for the agents
patient_model = HfApiModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct")
physician_model = HfApiModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct")
# Initialize the agents
patient_agent = CodeAgent(
model=patient_model,
system_prompt=patient_system_prompt,
planning_interval=1 # Allow the agent to plan after each turn
)
physician_agent = CodeAgent(
model=physician_model,
system_prompt=physician_system_prompt,
planning_interval=1 # Allow the agent to plan after each turn
)
def generate_conversation(topic, turns):
conversation = []
total_tokens = 0
physician_tokens = 0
patient_tokens = 0
# Initial prompt for the patient
patient_input = f"I'm here to talk about {topic}."
print(f"Patient Initial Input: {patient_input}") # Debugging
patient_response = patient_agent.run(patient_input)
print(f"Patient Response: {patient_response}") # Debugging
patient_tokens += len(patient_response.split())
conversation.append({"role": "patient", "message": patient_response, "tokens": len(patient_response.split())})
for turn in range(turns):
# Physician's turn
print(f"Physician Turn {turn} Prompt: {patient_response}") # Debugging
physician_response = physician_agent.run(patient_response)
print(f"Physician Response: {physician_response}") # Debugging
physician_tokens += len(physician_response.split())
conversation.append({"role": "physician", "message": physician_response, "tokens": len(physician_response.split())})
# Patient's turn
print(f"Patient Turn {turn} Prompt: {physician_response}") # Debugging
patient_response = patient_agent.run(physician_response)
print(f"Patient Response: {patient_response}") # Debugging
patient_tokens += len(patient_response.split())
conversation.append({"role": "patient", "message": patient_response, "tokens": len(patient_response.split())})
# Summarize the conversation
summary = {
"total_tokens": physician_tokens + patient_tokens,
"physician_tokens": physician_tokens,
"patient_tokens": patient_tokens
}
return conversation, summary
def app_interface(topic, turns):
conversation, summary = generate_conversation(topic, turns)
output = {
"input": {"topic": topic, "turns": turns},
"conversation": conversation,
"summary": summary
}
return output
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## π¨ββοΈ Synthetic Data Generation: Physician-Patient Role-Play π€")
with gr.Row():
topic_input = gr.Textbox(label="Enter Disease/Topic", placeholder="e.g., chest pain")
turns_input = gr.Number(label="Number of Turns", value=1) # Default to 1 turn for debugging
submit_button = gr.Button("π Start Interaction")
output_json = gr.JSON(label="Generated Conversation")
# Download button for the conversation
download_button = gr.Button("π₯ Download Conversation")
download_button.click(
fn=lambda data: gr.File.download(data),
inputs=output_json,
outputs=gr.File()
)
submit_button.click(
fn=app_interface,
inputs=[topic_input, turns_input],
outputs=output_json
)
demo.launch() |