ari7cr commited on
Commit
2cf432b
·
verified ·
1 Parent(s): 8a10b69

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -6,6 +6,10 @@ import torch
6
  physician = pipeline("text-generation", model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
7
  patient = pipeline("text-generation", model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
8
 
 
 
 
 
9
  def generate_conversation(topic, turns):
10
  conversation = []
11
  total_tokens = 0
@@ -13,10 +17,10 @@ def generate_conversation(topic, turns):
13
  patient_tokens = 0
14
 
15
  # Initial prompt for the patient
16
- patient_prompt = f"Imagine you are a patient. You are here to talk about {topic}."
17
  print(f"Patient Initial Prompt: {patient_prompt}") # Debugging
18
  patient_response = patient(
19
- patient_prompt,
20
  max_length=50, # Reduce max_length for faster responses
21
  num_return_sequences=1,
22
  truncation=True, # Explicitly enable truncation
@@ -29,10 +33,9 @@ def generate_conversation(topic, turns):
29
 
30
  for turn in range(turns):
31
  # Physician's turn
32
- physician_prompt = f"Imagine you are a physician. How would you respond to: {patient_response}"
33
- print(f"Physician Turn {turn} Prompt: {physician_prompt}") # Debugging
34
  physician_response = physician(
35
- physician_prompt,
36
  max_length=50, # Reduce max_length for faster responses
37
  num_return_sequences=1,
38
  truncation=True, # Explicitly enable truncation
@@ -44,10 +47,9 @@ def generate_conversation(topic, turns):
44
  conversation.append({"role": "physician", "message": physician_response, "tokens": len(physician_response.split())})
45
 
46
  # Patient's turn
47
- patient_prompt = f"Imagine you are a patient. How would you respond to: {physician_response}"
48
- print(f"Patient Turn {turn} Prompt: {patient_prompt}") # Debugging
49
  patient_response = patient(
50
- patient_prompt,
51
  max_length=50, # Reduce max_length for faster responses
52
  num_return_sequences=1,
53
  truncation=True, # Explicitly enable truncation
 
6
  physician = pipeline("text-generation", model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
7
  patient = pipeline("text-generation", model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
8
 
9
+ # System prompts to define roles
10
+ patient_system_prompt = "You are a patient describing your symptoms to a physician."
11
+ physician_system_prompt = "You are a physician responding to a patient's symptoms."
12
+
13
  def generate_conversation(topic, turns):
14
  conversation = []
15
  total_tokens = 0
 
17
  patient_tokens = 0
18
 
19
  # Initial prompt for the patient
20
+ patient_prompt = f"I'm here to talk about {topic}."
21
  print(f"Patient Initial Prompt: {patient_prompt}") # Debugging
22
  patient_response = patient(
23
+ f"{patient_system_prompt} {patient_prompt}",
24
  max_length=50, # Reduce max_length for faster responses
25
  num_return_sequences=1,
26
  truncation=True, # Explicitly enable truncation
 
33
 
34
  for turn in range(turns):
35
  # Physician's turn
36
+ print(f"Physician Turn {turn} Prompt: {patient_response}") # Debugging
 
37
  physician_response = physician(
38
+ f"{physician_system_prompt} Patient says: {patient_response}",
39
  max_length=50, # Reduce max_length for faster responses
40
  num_return_sequences=1,
41
  truncation=True, # Explicitly enable truncation
 
47
  conversation.append({"role": "physician", "message": physician_response, "tokens": len(physician_response.split())})
48
 
49
  # Patient's turn
50
+ print(f"Patient Turn {turn} Prompt: {physician_response}") # Debugging
 
51
  patient_response = patient(
52
+ f"{patient_system_prompt} Physician says: {physician_response}",
53
  max_length=50, # Reduce max_length for faster responses
54
  num_return_sequences=1,
55
  truncation=True, # Explicitly enable truncation