faq / app.py
andreasmartin's picture
deepnote update
6c9d07b
raw
history blame
2.22 kB
from fastapi import FastAPI
from pydantic import BaseModel
import faq as faq
import util as util
import uvicorn
import gradio as gr
from typing import List, Optional
app = FastAPI()
class AskRequest(BaseModel):
question: str
sheet_url: str
page_content_column: str
k: int
class AskRequestEx(BaseModel):
question: str
sheet_url: str
page_content_column: str
k: int
id_column: str
synonyms: Optional[List[List[str]]] = None
@app.post("/api/v1/ask")
async def ask_api(request: AskRequest):
return ask(
request.sheet_url, request.page_content_column, request.k, request.question
)
@app.post("/api/v2/ask")
async def ask_api(request: AskRequestEx):
util.SPLIT_PAGE_BREAKS = True
if request.synonyms is not None:
util.SYNONYMS = request.synonyms
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
documents = faq.similarity_search(vectordb, request.question, k=request.k)
df_doc = util.transform_documents_to_dataframe(documents)
df_filter = util.remove_duplicates_by_column(df_doc, request.id_column)
return util.dataframe_to_dict(df_filter)
@app.delete("/api/v1/")
async def delete_vectordb_api():
return delete_vectordb()
def ask(sheet_url: str, page_content_column: str, k: int, question: str):
util.SPLIT_PAGE_BREAKS = False
vectordb = faq.load_vectordb(sheet_url, page_content_column)
result = faq.similarity_search(vectordb, question, k=k)
return result
def delete_vectordb():
faq.delete_vectordb()
with gr.Blocks() as block:
sheet_url = gr.Textbox(label="Google Sheet URL")
page_content_column = gr.Textbox(label="Question Column")
k = gr.Slider(2, 5, step=1, label="K")
question = gr.Textbox(label="Question")
ask_button = gr.Button("Ask")
answer_output = gr.JSON(label="Answer")
delete_button = gr.Button("Delete Vector DB")
ask_button.click(
ask,
inputs=[sheet_url, page_content_column, k, question],
outputs=answer_output,
)
delete_button.click(delete_vectordb)
app = gr.mount_gradio_app(app, block, path="/")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)