Spaces:
Sleeping
Sleeping
Commit
·
6c9d07b
1
Parent(s):
78aafcc
deepnote update
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import faq as faq
|
|
4 |
import util as util
|
5 |
import uvicorn
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
@@ -15,6 +16,15 @@ class AskRequest(BaseModel):
|
|
15 |
k: int
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@app.post("/api/v1/ask")
|
19 |
async def ask_api(request: AskRequest):
|
20 |
return ask(
|
@@ -23,12 +33,14 @@ async def ask_api(request: AskRequest):
|
|
23 |
|
24 |
|
25 |
@app.post("/api/v2/ask")
|
26 |
-
async def ask_api(request:
|
27 |
util.SPLIT_PAGE_BREAKS = True
|
|
|
|
|
28 |
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
|
29 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
30 |
df_doc = util.transform_documents_to_dataframe(documents)
|
31 |
-
df_filter = util.remove_duplicates_by_column(df_doc,
|
32 |
return util.dataframe_to_dict(df_filter)
|
33 |
|
34 |
|
|
|
4 |
import util as util
|
5 |
import uvicorn
|
6 |
import gradio as gr
|
7 |
+
from typing import List, Optional
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
16 |
k: int
|
17 |
|
18 |
|
19 |
+
class AskRequestEx(BaseModel):
|
20 |
+
question: str
|
21 |
+
sheet_url: str
|
22 |
+
page_content_column: str
|
23 |
+
k: int
|
24 |
+
id_column: str
|
25 |
+
synonyms: Optional[List[List[str]]] = None
|
26 |
+
|
27 |
+
|
28 |
@app.post("/api/v1/ask")
|
29 |
async def ask_api(request: AskRequest):
|
30 |
return ask(
|
|
|
33 |
|
34 |
|
35 |
@app.post("/api/v2/ask")
|
36 |
+
async def ask_api(request: AskRequestEx):
|
37 |
util.SPLIT_PAGE_BREAKS = True
|
38 |
+
if request.synonyms is not None:
|
39 |
+
util.SYNONYMS = request.synonyms
|
40 |
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
|
41 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
42 |
df_doc = util.transform_documents_to_dataframe(documents)
|
43 |
+
df_filter = util.remove_duplicates_by_column(df_doc, request.id_column)
|
44 |
return util.dataframe_to_dict(df_filter)
|
45 |
|
46 |
|
faq.py
CHANGED
@@ -103,7 +103,7 @@ def create_vectordb_id(
|
|
103 |
if embedding_function is None:
|
104 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
105 |
|
106 |
-
df = util.read_df(util.xlsx_url(faq_id))
|
107 |
documents = create_documents(df, page_content_column)
|
108 |
vectordb = get_vectordb(
|
109 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
|
|
103 |
if embedding_function is None:
|
104 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
105 |
|
106 |
+
df = util.read_df(util.xlsx_url(faq_id), page_content_column)
|
107 |
documents = create_documents(df, page_content_column)
|
108 |
vectordb = get_vectordb(
|
109 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
util.py
CHANGED
@@ -4,6 +4,7 @@ SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
|
4 |
SHEET_URL_Y = "/edit#gid="
|
5 |
SHEET_URL_Y_EXPORT = "/export?gid="
|
6 |
SPLIT_PAGE_BREAKS = False
|
|
|
7 |
|
8 |
|
9 |
def get_id(sheet_url: str) -> str:
|
@@ -17,10 +18,12 @@ def xlsx_url(get_id: str) -> str:
|
|
17 |
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
|
18 |
|
19 |
|
20 |
-
def read_df(xlsx_url: str,
|
21 |
df = pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
22 |
-
if
|
23 |
df = split_page_breaks(df, page_content_column)
|
|
|
|
|
24 |
return df
|
25 |
|
26 |
|
@@ -71,3 +74,20 @@ def dataframe_to_dict(df):
|
|
71 |
df_records = df.to_dict(orient="records")
|
72 |
|
73 |
return df_records
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
SHEET_URL_Y = "/edit#gid="
|
5 |
SHEET_URL_Y_EXPORT = "/export?gid="
|
6 |
SPLIT_PAGE_BREAKS = False
|
7 |
+
SYNONYMS = None
|
8 |
|
9 |
|
10 |
def get_id(sheet_url: str) -> str:
|
|
|
18 |
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
|
19 |
|
20 |
|
21 |
+
def read_df(xlsx_url: str, page_content_column: str) -> pd.DataFrame:
|
22 |
df = pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
23 |
+
if SPLIT_PAGE_BREAKS:
|
24 |
df = split_page_breaks(df, page_content_column)
|
25 |
+
if SYNONYMS is not None:
|
26 |
+
df = duplicate_rows_with_synonyms(df, page_content_column, SYNONYMS)
|
27 |
return df
|
28 |
|
29 |
|
|
|
74 |
df_records = df.to_dict(orient="records")
|
75 |
|
76 |
return df_records
|
77 |
+
|
78 |
+
|
79 |
+
def duplicate_rows_with_synonyms(df, column, synonyms):
|
80 |
+
new_rows = []
|
81 |
+
for index, row in df.iterrows():
|
82 |
+
new_rows.append(row)
|
83 |
+
for synonym_list in synonyms:
|
84 |
+
for word in row[column].split():
|
85 |
+
if word in synonym_list:
|
86 |
+
for synonym in synonym_list:
|
87 |
+
if synonym != word:
|
88 |
+
new_row = row.copy()
|
89 |
+
new_row[column] = row[column].replace(word, synonym)
|
90 |
+
new_rows.append(new_row)
|
91 |
+
new_df = pd.DataFrame(new_rows, columns=df.columns)
|
92 |
+
new_df = new_df.reset_index(drop=True)
|
93 |
+
return new_df
|