Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from torch import nn as nn | |
| from torchvision.ops.misc import FrozenBatchNorm2d | |
| import logging | |
| # import h5py | |
| from tqdm import tqdm | |
| import random | |
| import json | |
| import os | |
| import pathlib | |
| # TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later. | |
| dataset_split = { | |
| "audiocaps": ["train", "valid", "test"], | |
| "audioset": ["balanced_train", "unbalanced_train", "eval"], | |
| "BBCSoundEffects": ["train", "test"], | |
| "Clotho": ["train", "test", "valid"], | |
| "free_to_use_sounds": ["train", "test"], | |
| "paramount_motion": ["train", "test"], | |
| "sonniss_game_effects": ["train", "test"], | |
| "wesoundeffects": ["train", "test"], | |
| "MACS": ["train", "test"], | |
| "freesound": ["train", "test"], | |
| "FSD50K": ["train", "test", "valid"], | |
| "fsd50k_class_label": ["train", "test", "valid"], | |
| "esc50": ["train", "test"], | |
| "audiostock": ["train", "test"], | |
| "freesound_no_overlap_noesc50": ["train", "test"], | |
| "epidemic_sound_effects": ["train", "test"], | |
| "VGGSound": ["train", "test"], | |
| "urbansound8k_class_label": ["train", "test"], | |
| "audioset_t5": ["balanced_train", "unbalanced_train", "eval"], | |
| "epidemic_sound_effects_t5": ["train", "test"], | |
| "WavText5K": ["train", "test"], | |
| "esc50_no_overlap": ["train", "test"], | |
| "usd8k_no_overlap": ["train", "test"], | |
| "fsd50k_200_class_label": ["train", "test", "valid"], | |
| } | |
| def freeze_batch_norm_2d(module, module_match={}, name=""): | |
| """ | |
| Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is | |
| itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and | |
| returned. Otherwise, the module is walked recursively and submodules are converted in place. | |
| Args: | |
| module (torch.nn.Module): Any PyTorch module. | |
| module_match (dict): Dictionary of full module names to freeze (all if empty) | |
| name (str): Full module name (prefix) | |
| Returns: | |
| torch.nn.Module: Resulting module | |
| Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 | |
| """ | |
| res = module | |
| is_match = True | |
| if module_match: | |
| is_match = name in module_match | |
| if is_match and isinstance( | |
| module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm) | |
| ): | |
| res = FrozenBatchNorm2d(module.num_features) | |
| res.num_features = module.num_features | |
| res.affine = module.affine | |
| if module.affine: | |
| res.weight.data = module.weight.data.clone().detach() | |
| res.bias.data = module.bias.data.clone().detach() | |
| res.running_mean.data = module.running_mean.data | |
| res.running_var.data = module.running_var.data | |
| res.eps = module.eps | |
| else: | |
| for child_name, child in module.named_children(): | |
| full_child_name = ".".join([name, child_name]) if name else child_name | |
| new_child = freeze_batch_norm_2d(child, module_match, full_child_name) | |
| if new_child is not child: | |
| res.add_module(child_name, new_child) | |
| return res | |
| def exist(dataset_name, dataset_type): | |
| """ | |
| Check if dataset exists | |
| """ | |
| if dataset_type in dataset_split[dataset_name]: | |
| return True | |
| else: | |
| return False | |
| def get_tar_path_from_dataset_name( | |
| dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None | |
| ): | |
| """ | |
| Get tar path from dataset name and type | |
| """ | |
| output = [] | |
| for n in dataset_names: | |
| if full_dataset is not None and n in full_dataset: | |
| current_dataset_types = dataset_split[n] | |
| else: | |
| current_dataset_types = dataset_types | |
| for s in current_dataset_types: | |
| tmp = [] | |
| if islocal: | |
| sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json" | |
| if not os.path.exists(sizefilepath_): | |
| sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" | |
| else: | |
| sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" | |
| if not os.path.exists(sizefilepath_): | |
| continue | |
| sizes = json.load(open(sizefilepath_, "r")) | |
| for k in sizes.keys(): | |
| if islocal: | |
| tmp.append(f"{dataset_path}/{n}/{s}/{k}") | |
| else: | |
| tmp.append( | |
| f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -" | |
| ) | |
| if proportion != 1: | |
| tmp = random.sample(tmp, int(proportion * len(tmp))) | |
| output.append(tmp) | |
| return sum(output, []) | |
| def get_tar_path_from_txts(txt_path, islocal, proportion=1): | |
| """ | |
| Get tar path from txt path | |
| """ | |
| if isinstance(txt_path, (list, tuple)): | |
| return sum( | |
| [ | |
| get_tar_path_from_txts( | |
| txt_path[i], islocal=islocal, proportion=proportion | |
| ) | |
| for i in range(len(txt_path)) | |
| ], | |
| [], | |
| ) | |
| if isinstance(txt_path, str): | |
| with open(txt_path) as f: | |
| lines = f.readlines() | |
| if islocal: | |
| lines = [ | |
| lines[i] | |
| .split("\n")[0] | |
| .replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/") | |
| for i in range(len(lines)) | |
| ] | |
| else: | |
| lines = [ | |
| lines[i].split("\n")[0].replace(".tar", ".tar -") | |
| for i in range(len(lines)) | |
| ] | |
| if proportion != 1: | |
| print("Sampling tars with proportion of {}".format(proportion)) | |
| lines = random.sample(lines, int(proportion * len(lines))) | |
| return lines | |
| def get_mix_lambda(mixup_alpha, batch_size): | |
| mixup_lambdas = [ | |
| np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size) | |
| ] | |
| return np.array(mixup_lambdas).astype(np.float32) | |
| def do_mixup(x, mixup_lambda): | |
| """ | |
| Args: | |
| x: (batch_size , ...) | |
| mixup_lambda: (batch_size,) | |
| Returns: | |
| out: (batch_size, ...) | |
| """ | |
| out = ( | |
| x.transpose(0, -1) * mixup_lambda | |
| + torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda) | |
| ).transpose(0, -1) | |
| return out | |
| def interpolate(x, ratio): | |
| """Interpolate data in time domain. This is used to compensate the | |
| resolution reduction in downsampling of a CNN. | |
| Args: | |
| x: (batch_size, time_steps, classes_num) | |
| ratio: int, ratio to interpolate | |
| Returns: | |
| upsampled: (batch_size, time_steps * ratio, classes_num) | |
| """ | |
| (batch_size, time_steps, classes_num) = x.shape | |
| upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1) | |
| upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num) | |
| return upsampled | |
| def pad_framewise_output(framewise_output, frames_num): | |
| """Pad framewise_output to the same length as input frames. The pad value | |
| is the same as the value of the last frame. | |
| Args: | |
| framewise_output: (batch_size, frames_num, classes_num) | |
| frames_num: int, number of frames to pad | |
| Outputs: | |
| output: (batch_size, frames_num, classes_num) | |
| """ | |
| pad = framewise_output[:, -1:, :].repeat( | |
| 1, frames_num - framewise_output.shape[1], 1 | |
| ) | |
| """tensor for padding""" | |
| output = torch.cat((framewise_output, pad), dim=1) | |
| """(batch_size, frames_num, classes_num)""" | |
| # def process_ipc(index_path, classes_num, filename): | |
| # # load data | |
| # logging.info("Load Data...............") | |
| # ipc = [[] for _ in range(classes_num)] | |
| # with h5py.File(index_path, "r") as f: | |
| # for i in tqdm(range(len(f["target"]))): | |
| # t_class = np.where(f["target"][i])[0] | |
| # for t in t_class: | |
| # ipc[t].append(i) | |
| # print(ipc) | |
| # np.save(filename, ipc) | |
| # logging.info("Load Data Succeed...............") | |
| def save_to_dict(s, o_={}): | |
| sp = s.split(": ") | |
| o_.update({sp[0]: float(sp[1])}) | |
| return o_ | |
| def get_data_from_log(txt_path): | |
| """ | |
| Output dictionary from out.txt log file | |
| """ | |
| with open(txt_path) as f: | |
| lines = f.readlines() | |
| val_data = {} | |
| train_data = {} | |
| train_losses = [] | |
| train_losses_epoch = [] | |
| for i in range(len(lines)): | |
| if "| INFO |" in lines[i]: | |
| if "Eval Epoch" in lines[i]: | |
| if "val_loss" in lines[i]: | |
| # float(regex.sub("", lines[310].split(" ")[-1]).replace(" ", "")) | |
| line = lines[i].split("Eval Epoch: ")[-1] | |
| num_epoch = int(line.split(" ")[0].split(" ")[0]) | |
| d = { | |
| line.split(" ")[0] | |
| .split(" ")[1] | |
| .replace(":", ""): float(line.split(" ")[0].split(" ")[-1]) | |
| } | |
| for i in range(1, len(line.split(" "))): | |
| d = save_to_dict(line.split(" ")[i], d) | |
| val_data[num_epoch] = d | |
| elif "Train Epoch" in lines[i]: | |
| num_epoch = int(lines[i].split("Train Epoch: ")[1][0]) | |
| loss = float(lines[i].split("Loss: ")[-1].split(" (")[0]) | |
| train_losses.append(loss) | |
| train_losses_epoch.append(num_epoch) | |
| for i in range(len(train_losses)): | |
| train_data[i] = { | |
| "num_epoch": train_losses_epoch[i], | |
| "train_loss": train_losses[i], | |
| } | |
| return train_data, val_data | |
| def save_p(obj, filename): | |
| import pickle | |
| try: | |
| from deepdiff import DeepDiff | |
| except: | |
| os.system("pip install deepdiff") | |
| from deepdiff import DeepDiff | |
| with open(filename, "wb") as file: | |
| pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) # highest protocol | |
| with open(filename, "rb") as file: | |
| z = pickle.load(file) | |
| assert ( | |
| DeepDiff(obj, z, ignore_string_case=True) == {} | |
| ), "there is something wrong with the saving process" | |
| return | |
| def load_p(filename): | |
| import pickle | |
| with open(filename, "rb") as file: | |
| z = pickle.load(file) | |
| return z | |
| def save_json(data, name="data.json"): | |
| import json | |
| with open(name, "w") as fp: | |
| json.dump(data, fp) | |
| return | |
| def load_json(name): | |
| import json | |
| with open(name, "r") as fp: | |
| data = json.load(fp) | |
| return data | |
| from multiprocessing import Process, Manager | |
| from multiprocessing import Process, Value, Array | |
| from ctypes import c_wchar | |
| def load_class_label(path): | |
| # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing | |
| # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array | |
| out = None | |
| if path is not None: | |
| if pathlib.Path(path).suffix in [".pkl", ".pickle"]: | |
| out = load_p(path) | |
| elif pathlib.Path(path).suffix in [".json", ".txt"]: | |
| out = load_json(path) | |
| elif pathlib.Path(path).suffix in [".npy", ".npz"]: | |
| out = np.load(path) | |
| elif pathlib.Path(path).suffix in [".csv"]: | |
| import pandas as pd | |
| out = pd.read_csv(path) | |
| return out | |
| # if out is None: | |
| # return None | |
| # else: | |
| # key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False) | |
| # val = Array('i', out.values(), lock=False) | |
| # return (key, val) | |
| from torch import optim | |
| def get_optimizer(params, lr, betas, eps, momentum, optimizer_name): | |
| if optimizer_name.lower() == "adamw": | |
| optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps) | |
| elif optimizer_name.lower() == "sgd": | |
| optimizer = optim.SGD(params, lr=lr, momentum=momentum) | |
| elif optimizer_name.lower() == "adam": | |
| optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps) | |
| else: | |
| raise ValueError("optimizer name is not correct") | |
| return optimizer | |