Spaces:
Runtime error
Runtime error
Upload 167 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- audioldm/__init__.py +8 -0
- audioldm/__main__.py +183 -0
- audioldm/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/__pycache__/__init__.cpython-37.pyc +0 -0
- audioldm/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-310.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-37.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-39.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-310.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-37.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-39.pyc +0 -0
- audioldm/__pycache__/utils.cpython-310.pyc +0 -0
- audioldm/__pycache__/utils.cpython-37.pyc +0 -0
- audioldm/__pycache__/utils.cpython-39.pyc +0 -0
- audioldm/audio/__init__.py +2 -0
- audioldm/audio/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/__init__.cpython-37.pyc +0 -0
- audioldm/audio/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-37.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/mix.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-37.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-37.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/torch_tools.cpython-39.pyc +0 -0
- audioldm/audio/audio_processing.py +100 -0
- audioldm/audio/stft.py +186 -0
- audioldm/audio/tools.py +85 -0
- audioldm/clap/__init__.py +0 -0
- audioldm/clap/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/clap/__pycache__/encoders.cpython-39.pyc +0 -0
- audioldm/clap/encoders.py +170 -0
- audioldm/clap/open_clip/__init__.py +25 -0
- audioldm/clap/open_clip/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/factory.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/feature_fusion.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/htsat.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/loss.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/model.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/openai.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/pann_model.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/pretrained.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/timm_model.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/tokenizer.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/transform.cpython-39.pyc +0 -0
- audioldm/clap/open_clip/__pycache__/utils.cpython-39.pyc +0 -0
audioldm/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .ldm import LatentDiffusion
|
| 2 |
+
from .utils import seed_everything, save_wave, get_time, get_duration
|
| 3 |
+
from .pipeline import *
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
audioldm/__main__.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
import os
|
| 3 |
+
from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
CACHE_DIR = os.getenv(
|
| 7 |
+
"AUDIOLDM_CACHE_DIR",
|
| 8 |
+
os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
|
| 9 |
+
|
| 10 |
+
parser = argparse.ArgumentParser()
|
| 11 |
+
|
| 12 |
+
parser.add_argument(
|
| 13 |
+
"--mode",
|
| 14 |
+
type=str,
|
| 15 |
+
required=False,
|
| 16 |
+
default="generation",
|
| 17 |
+
help="generation: text-to-audio generation; transfer: style transfer",
|
| 18 |
+
choices=["generation", "transfer"]
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
parser.add_argument(
|
| 22 |
+
"-t",
|
| 23 |
+
"--text",
|
| 24 |
+
type=str,
|
| 25 |
+
required=False,
|
| 26 |
+
default="",
|
| 27 |
+
help="Text prompt to the model for audio generation",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
parser.add_argument(
|
| 31 |
+
"-f",
|
| 32 |
+
"--file_path",
|
| 33 |
+
type=str,
|
| 34 |
+
required=False,
|
| 35 |
+
default=None,
|
| 36 |
+
help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio",
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"--transfer_strength",
|
| 41 |
+
type=float,
|
| 42 |
+
required=False,
|
| 43 |
+
default=0.5,
|
| 44 |
+
help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
"-s",
|
| 49 |
+
"--save_path",
|
| 50 |
+
type=str,
|
| 51 |
+
required=False,
|
| 52 |
+
help="The path to save model output",
|
| 53 |
+
default="./output",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
parser.add_argument(
|
| 57 |
+
"--model_name",
|
| 58 |
+
type=str,
|
| 59 |
+
required=False,
|
| 60 |
+
help="The checkpoint you gonna use",
|
| 61 |
+
default="audioldm-s-full",
|
| 62 |
+
choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2"]
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
parser.add_argument(
|
| 66 |
+
"-ckpt",
|
| 67 |
+
"--ckpt_path",
|
| 68 |
+
type=str,
|
| 69 |
+
required=False,
|
| 70 |
+
help="The path to the pretrained .ckpt model",
|
| 71 |
+
default=None,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
parser.add_argument(
|
| 75 |
+
"-b",
|
| 76 |
+
"--batchsize",
|
| 77 |
+
type=int,
|
| 78 |
+
required=False,
|
| 79 |
+
default=1,
|
| 80 |
+
help="Generate how many samples at the same time",
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
parser.add_argument(
|
| 84 |
+
"--ddim_steps",
|
| 85 |
+
type=int,
|
| 86 |
+
required=False,
|
| 87 |
+
default=200,
|
| 88 |
+
help="The sampling step for DDIM",
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
parser.add_argument(
|
| 92 |
+
"-gs",
|
| 93 |
+
"--guidance_scale",
|
| 94 |
+
type=float,
|
| 95 |
+
required=False,
|
| 96 |
+
default=2.5,
|
| 97 |
+
help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
parser.add_argument(
|
| 101 |
+
"-dur",
|
| 102 |
+
"--duration",
|
| 103 |
+
type=float,
|
| 104 |
+
required=False,
|
| 105 |
+
default=10.0,
|
| 106 |
+
help="The duration of the samples",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"-n",
|
| 111 |
+
"--n_candidate_gen_per_text",
|
| 112 |
+
type=int,
|
| 113 |
+
required=False,
|
| 114 |
+
default=3,
|
| 115 |
+
help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
parser.add_argument(
|
| 119 |
+
"--seed",
|
| 120 |
+
type=int,
|
| 121 |
+
required=False,
|
| 122 |
+
default=42,
|
| 123 |
+
help="Change this value (any integer number) will lead to a different generation result.",
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
args = parser.parse_args()
|
| 127 |
+
|
| 128 |
+
if(args.ckpt_path is not None):
|
| 129 |
+
print("Warning: ckpt_path has no effect after version 0.0.20.")
|
| 130 |
+
|
| 131 |
+
assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5"
|
| 132 |
+
|
| 133 |
+
mode = args.mode
|
| 134 |
+
if(mode == "generation" and args.file_path is not None):
|
| 135 |
+
mode = "generation_audio_to_audio"
|
| 136 |
+
if(len(args.text) > 0):
|
| 137 |
+
print("Warning: You have specified the --file_path. --text will be ignored")
|
| 138 |
+
args.text = ""
|
| 139 |
+
|
| 140 |
+
save_path = os.path.join(args.save_path, mode)
|
| 141 |
+
|
| 142 |
+
if(args.file_path is not None):
|
| 143 |
+
save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0]))
|
| 144 |
+
|
| 145 |
+
text = args.text
|
| 146 |
+
random_seed = args.seed
|
| 147 |
+
duration = args.duration
|
| 148 |
+
guidance_scale = args.guidance_scale
|
| 149 |
+
n_candidate_gen_per_text = args.n_candidate_gen_per_text
|
| 150 |
+
|
| 151 |
+
os.makedirs(save_path, exist_ok=True)
|
| 152 |
+
audioldm = build_model(model_name=args.model_name)
|
| 153 |
+
|
| 154 |
+
if(args.mode == "generation"):
|
| 155 |
+
waveform = text_to_audio(
|
| 156 |
+
audioldm,
|
| 157 |
+
text,
|
| 158 |
+
args.file_path,
|
| 159 |
+
random_seed,
|
| 160 |
+
duration=duration,
|
| 161 |
+
guidance_scale=guidance_scale,
|
| 162 |
+
ddim_steps=args.ddim_steps,
|
| 163 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
| 164 |
+
batchsize=args.batchsize,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
elif(args.mode == "transfer"):
|
| 168 |
+
assert args.file_path is not None
|
| 169 |
+
assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path
|
| 170 |
+
waveform = style_transfer(
|
| 171 |
+
audioldm,
|
| 172 |
+
text,
|
| 173 |
+
args.file_path,
|
| 174 |
+
args.transfer_strength,
|
| 175 |
+
random_seed,
|
| 176 |
+
duration=duration,
|
| 177 |
+
guidance_scale=guidance_scale,
|
| 178 |
+
ddim_steps=args.ddim_steps,
|
| 179 |
+
batchsize=args.batchsize,
|
| 180 |
+
)
|
| 181 |
+
waveform = waveform[:,None,:]
|
| 182 |
+
|
| 183 |
+
save_wave(waveform, save_path, name="%s_%s" % (get_time(), text))
|
audioldm/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (376 Bytes). View file
|
|
|
audioldm/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (290 Bytes). View file
|
|
|
audioldm/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (322 Bytes). View file
|
|
|
audioldm/__pycache__/ldm.cpython-310.pyc
ADDED
|
Binary file (16.1 kB). View file
|
|
|
audioldm/__pycache__/ldm.cpython-37.pyc
ADDED
|
Binary file (16 kB). View file
|
|
|
audioldm/__pycache__/ldm.cpython-39.pyc
ADDED
|
Binary file (16 kB). View file
|
|
|
audioldm/__pycache__/pipeline.cpython-310.pyc
ADDED
|
Binary file (6.69 kB). View file
|
|
|
audioldm/__pycache__/pipeline.cpython-37.pyc
ADDED
|
Binary file (6.41 kB). View file
|
|
|
audioldm/__pycache__/pipeline.cpython-39.pyc
ADDED
|
Binary file (6.54 kB). View file
|
|
|
audioldm/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (8.07 kB). View file
|
|
|
audioldm/__pycache__/utils.cpython-37.pyc
ADDED
|
Binary file (7.65 kB). View file
|
|
|
audioldm/__pycache__/utils.cpython-39.pyc
ADDED
|
Binary file (7.35 kB). View file
|
|
|
audioldm/audio/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .tools import wav_to_fbank, read_wav_file
|
| 2 |
+
from .stft import TacotronSTFT
|
audioldm/audio/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (314 Bytes). View file
|
|
|
audioldm/audio/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (228 Bytes). View file
|
|
|
audioldm/audio/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (260 Bytes). View file
|
|
|
audioldm/audio/__pycache__/audio_processing.cpython-310.pyc
ADDED
|
Binary file (2.84 kB). View file
|
|
|
audioldm/audio/__pycache__/audio_processing.cpython-37.pyc
ADDED
|
Binary file (2.74 kB). View file
|
|
|
audioldm/audio/__pycache__/audio_processing.cpython-39.pyc
ADDED
|
Binary file (2.78 kB). View file
|
|
|
audioldm/audio/__pycache__/mix.cpython-39.pyc
ADDED
|
Binary file (1.7 kB). View file
|
|
|
audioldm/audio/__pycache__/stft.cpython-310.pyc
ADDED
|
Binary file (5.08 kB). View file
|
|
|
audioldm/audio/__pycache__/stft.cpython-37.pyc
ADDED
|
Binary file (4.97 kB). View file
|
|
|
audioldm/audio/__pycache__/stft.cpython-39.pyc
ADDED
|
Binary file (4.99 kB). View file
|
|
|
audioldm/audio/__pycache__/tools.cpython-310.pyc
ADDED
|
Binary file (2.25 kB). View file
|
|
|
audioldm/audio/__pycache__/tools.cpython-37.pyc
ADDED
|
Binary file (2.16 kB). View file
|
|
|
audioldm/audio/__pycache__/tools.cpython-39.pyc
ADDED
|
Binary file (2.19 kB). View file
|
|
|
audioldm/audio/__pycache__/torch_tools.cpython-39.pyc
ADDED
|
Binary file (3.79 kB). View file
|
|
|
audioldm/audio/audio_processing.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import librosa.util as librosa_util
|
| 4 |
+
from scipy.signal import get_window
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def window_sumsquare(
|
| 8 |
+
window,
|
| 9 |
+
n_frames,
|
| 10 |
+
hop_length,
|
| 11 |
+
win_length,
|
| 12 |
+
n_fft,
|
| 13 |
+
dtype=np.float32,
|
| 14 |
+
norm=None,
|
| 15 |
+
):
|
| 16 |
+
"""
|
| 17 |
+
# from librosa 0.6
|
| 18 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
| 19 |
+
|
| 20 |
+
This is used to estimate modulation effects induced by windowing
|
| 21 |
+
observations in short-time fourier transforms.
|
| 22 |
+
|
| 23 |
+
Parameters
|
| 24 |
+
----------
|
| 25 |
+
window : string, tuple, number, callable, or list-like
|
| 26 |
+
Window specification, as in `get_window`
|
| 27 |
+
|
| 28 |
+
n_frames : int > 0
|
| 29 |
+
The number of analysis frames
|
| 30 |
+
|
| 31 |
+
hop_length : int > 0
|
| 32 |
+
The number of samples to advance between frames
|
| 33 |
+
|
| 34 |
+
win_length : [optional]
|
| 35 |
+
The length of the window function. By default, this matches `n_fft`.
|
| 36 |
+
|
| 37 |
+
n_fft : int > 0
|
| 38 |
+
The length of each analysis frame.
|
| 39 |
+
|
| 40 |
+
dtype : np.dtype
|
| 41 |
+
The data type of the output
|
| 42 |
+
|
| 43 |
+
Returns
|
| 44 |
+
-------
|
| 45 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
| 46 |
+
The sum-squared envelope of the window function
|
| 47 |
+
"""
|
| 48 |
+
if win_length is None:
|
| 49 |
+
win_length = n_fft
|
| 50 |
+
|
| 51 |
+
n = n_fft + hop_length * (n_frames - 1)
|
| 52 |
+
x = np.zeros(n, dtype=dtype)
|
| 53 |
+
|
| 54 |
+
# Compute the squared window at the desired length
|
| 55 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
| 56 |
+
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
|
| 57 |
+
win_sq = librosa_util.pad_center(win_sq, n_fft)
|
| 58 |
+
|
| 59 |
+
# Fill the envelope
|
| 60 |
+
for i in range(n_frames):
|
| 61 |
+
sample = i * hop_length
|
| 62 |
+
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
| 63 |
+
return x
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def griffin_lim(magnitudes, stft_fn, n_iters=30):
|
| 67 |
+
"""
|
| 68 |
+
PARAMS
|
| 69 |
+
------
|
| 70 |
+
magnitudes: spectrogram magnitudes
|
| 71 |
+
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
|
| 75 |
+
angles = angles.astype(np.float32)
|
| 76 |
+
angles = torch.autograd.Variable(torch.from_numpy(angles))
|
| 77 |
+
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
|
| 78 |
+
|
| 79 |
+
for i in range(n_iters):
|
| 80 |
+
_, angles = stft_fn.transform(signal)
|
| 81 |
+
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
|
| 82 |
+
return signal
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
|
| 86 |
+
"""
|
| 87 |
+
PARAMS
|
| 88 |
+
------
|
| 89 |
+
C: compression factor
|
| 90 |
+
"""
|
| 91 |
+
return normalize_fun(torch.clamp(x, min=clip_val) * C)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def dynamic_range_decompression(x, C=1):
|
| 95 |
+
"""
|
| 96 |
+
PARAMS
|
| 97 |
+
------
|
| 98 |
+
C: compression factor used to compress
|
| 99 |
+
"""
|
| 100 |
+
return torch.exp(x) / C
|
audioldm/audio/stft.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.signal import get_window
|
| 5 |
+
from librosa.util import pad_center, tiny
|
| 6 |
+
from librosa.filters import mel as librosa_mel_fn
|
| 7 |
+
|
| 8 |
+
from audioldm.audio.audio_processing import (
|
| 9 |
+
dynamic_range_compression,
|
| 10 |
+
dynamic_range_decompression,
|
| 11 |
+
window_sumsquare,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class STFT(torch.nn.Module):
|
| 16 |
+
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, filter_length, hop_length, win_length, window="hann"):
|
| 19 |
+
super(STFT, self).__init__()
|
| 20 |
+
self.filter_length = filter_length
|
| 21 |
+
self.hop_length = hop_length
|
| 22 |
+
self.win_length = win_length
|
| 23 |
+
self.window = window
|
| 24 |
+
self.forward_transform = None
|
| 25 |
+
scale = self.filter_length / self.hop_length
|
| 26 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
| 27 |
+
|
| 28 |
+
cutoff = int((self.filter_length / 2 + 1))
|
| 29 |
+
fourier_basis = np.vstack(
|
| 30 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
| 34 |
+
inverse_basis = torch.FloatTensor(
|
| 35 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
if window is not None:
|
| 39 |
+
assert filter_length >= win_length
|
| 40 |
+
# get window and zero center pad it to filter_length
|
| 41 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
| 42 |
+
fft_window = pad_center(fft_window, size=filter_length)
|
| 43 |
+
fft_window = torch.from_numpy(fft_window).float()
|
| 44 |
+
|
| 45 |
+
# window the bases
|
| 46 |
+
forward_basis *= fft_window
|
| 47 |
+
inverse_basis *= fft_window
|
| 48 |
+
|
| 49 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
| 50 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
| 51 |
+
|
| 52 |
+
def transform(self, input_data):
|
| 53 |
+
device = self.forward_basis.device
|
| 54 |
+
input_data = input_data.to(device)
|
| 55 |
+
|
| 56 |
+
num_batches = input_data.size(0)
|
| 57 |
+
num_samples = input_data.size(1)
|
| 58 |
+
|
| 59 |
+
self.num_samples = num_samples
|
| 60 |
+
|
| 61 |
+
# similar to librosa, reflect-pad the input
|
| 62 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
| 63 |
+
input_data = F.pad(
|
| 64 |
+
input_data.unsqueeze(1),
|
| 65 |
+
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
| 66 |
+
mode="reflect",
|
| 67 |
+
)
|
| 68 |
+
input_data = input_data.squeeze(1)
|
| 69 |
+
|
| 70 |
+
forward_transform = F.conv1d(
|
| 71 |
+
input_data,
|
| 72 |
+
torch.autograd.Variable(self.forward_basis, requires_grad=False),
|
| 73 |
+
stride=self.hop_length,
|
| 74 |
+
padding=0,
|
| 75 |
+
)#.cpu()
|
| 76 |
+
|
| 77 |
+
cutoff = int((self.filter_length / 2) + 1)
|
| 78 |
+
real_part = forward_transform[:, :cutoff, :]
|
| 79 |
+
imag_part = forward_transform[:, cutoff:, :]
|
| 80 |
+
|
| 81 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
| 82 |
+
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
|
| 83 |
+
|
| 84 |
+
return magnitude, phase
|
| 85 |
+
|
| 86 |
+
def inverse(self, magnitude, phase):
|
| 87 |
+
device = self.forward_basis.device
|
| 88 |
+
magnitude, phase = magnitude.to(device), phase.to(device)
|
| 89 |
+
|
| 90 |
+
recombine_magnitude_phase = torch.cat(
|
| 91 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
inverse_transform = F.conv_transpose1d(
|
| 95 |
+
recombine_magnitude_phase,
|
| 96 |
+
torch.autograd.Variable(self.inverse_basis, requires_grad=False),
|
| 97 |
+
stride=self.hop_length,
|
| 98 |
+
padding=0,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
if self.window is not None:
|
| 102 |
+
window_sum = window_sumsquare(
|
| 103 |
+
self.window,
|
| 104 |
+
magnitude.size(-1),
|
| 105 |
+
hop_length=self.hop_length,
|
| 106 |
+
win_length=self.win_length,
|
| 107 |
+
n_fft=self.filter_length,
|
| 108 |
+
dtype=np.float32,
|
| 109 |
+
)
|
| 110 |
+
# remove modulation effects
|
| 111 |
+
approx_nonzero_indices = torch.from_numpy(
|
| 112 |
+
np.where(window_sum > tiny(window_sum))[0]
|
| 113 |
+
)
|
| 114 |
+
window_sum = torch.autograd.Variable(
|
| 115 |
+
torch.from_numpy(window_sum), requires_grad=False
|
| 116 |
+
)
|
| 117 |
+
window_sum = window_sum
|
| 118 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
| 119 |
+
approx_nonzero_indices
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
# scale by hop ratio
|
| 123 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
| 124 |
+
|
| 125 |
+
inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
|
| 126 |
+
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
|
| 127 |
+
|
| 128 |
+
return inverse_transform
|
| 129 |
+
|
| 130 |
+
def forward(self, input_data):
|
| 131 |
+
self.magnitude, self.phase = self.transform(input_data)
|
| 132 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
| 133 |
+
return reconstruction
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class TacotronSTFT(torch.nn.Module):
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
filter_length,
|
| 140 |
+
hop_length,
|
| 141 |
+
win_length,
|
| 142 |
+
n_mel_channels,
|
| 143 |
+
sampling_rate,
|
| 144 |
+
mel_fmin,
|
| 145 |
+
mel_fmax,
|
| 146 |
+
):
|
| 147 |
+
super(TacotronSTFT, self).__init__()
|
| 148 |
+
self.n_mel_channels = n_mel_channels
|
| 149 |
+
self.sampling_rate = sampling_rate
|
| 150 |
+
self.stft_fn = STFT(filter_length, hop_length, win_length)
|
| 151 |
+
mel_basis = librosa_mel_fn(
|
| 152 |
+
sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax
|
| 153 |
+
)
|
| 154 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
| 155 |
+
self.register_buffer("mel_basis", mel_basis)
|
| 156 |
+
|
| 157 |
+
def spectral_normalize(self, magnitudes, normalize_fun):
|
| 158 |
+
output = dynamic_range_compression(magnitudes, normalize_fun)
|
| 159 |
+
return output
|
| 160 |
+
|
| 161 |
+
def spectral_de_normalize(self, magnitudes):
|
| 162 |
+
output = dynamic_range_decompression(magnitudes)
|
| 163 |
+
return output
|
| 164 |
+
|
| 165 |
+
def mel_spectrogram(self, y, normalize_fun=torch.log):
|
| 166 |
+
"""Computes mel-spectrograms from a batch of waves
|
| 167 |
+
PARAMS
|
| 168 |
+
------
|
| 169 |
+
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
|
| 170 |
+
|
| 171 |
+
RETURNS
|
| 172 |
+
-------
|
| 173 |
+
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
|
| 174 |
+
"""
|
| 175 |
+
assert torch.min(y.data) >= -1, torch.min(y.data)
|
| 176 |
+
assert torch.max(y.data) <= 1, torch.max(y.data)
|
| 177 |
+
|
| 178 |
+
magnitudes, phases = self.stft_fn.transform(y)
|
| 179 |
+
magnitudes = magnitudes.data
|
| 180 |
+
mel_output = torch.matmul(self.mel_basis, magnitudes)
|
| 181 |
+
mel_output = self.spectral_normalize(mel_output, normalize_fun)
|
| 182 |
+
energy = torch.norm(magnitudes, dim=1)
|
| 183 |
+
|
| 184 |
+
log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
|
| 185 |
+
|
| 186 |
+
return mel_output, log_magnitudes, energy
|
audioldm/audio/tools.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torchaudio
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def get_mel_from_wav(audio, _stft):
|
| 7 |
+
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
|
| 8 |
+
audio = torch.autograd.Variable(audio, requires_grad=False)
|
| 9 |
+
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
|
| 10 |
+
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
|
| 11 |
+
log_magnitudes_stft = (
|
| 12 |
+
torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
|
| 13 |
+
)
|
| 14 |
+
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
|
| 15 |
+
return melspec, log_magnitudes_stft, energy
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def _pad_spec(fbank, target_length=1024):
|
| 19 |
+
n_frames = fbank.shape[0]
|
| 20 |
+
p = target_length - n_frames
|
| 21 |
+
# cut and pad
|
| 22 |
+
if p > 0:
|
| 23 |
+
m = torch.nn.ZeroPad2d((0, 0, 0, p))
|
| 24 |
+
fbank = m(fbank)
|
| 25 |
+
elif p < 0:
|
| 26 |
+
fbank = fbank[0:target_length, :]
|
| 27 |
+
|
| 28 |
+
if fbank.size(-1) % 2 != 0:
|
| 29 |
+
fbank = fbank[..., :-1]
|
| 30 |
+
|
| 31 |
+
return fbank
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def pad_wav(waveform, segment_length):
|
| 35 |
+
waveform_length = waveform.shape[-1]
|
| 36 |
+
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
|
| 37 |
+
if segment_length is None or waveform_length == segment_length:
|
| 38 |
+
return waveform
|
| 39 |
+
elif waveform_length > segment_length:
|
| 40 |
+
return waveform[:segment_length]
|
| 41 |
+
elif waveform_length < segment_length:
|
| 42 |
+
temp_wav = np.zeros((1, segment_length))
|
| 43 |
+
temp_wav[:, :waveform_length] = waveform
|
| 44 |
+
return temp_wav
|
| 45 |
+
|
| 46 |
+
def normalize_wav(waveform):
|
| 47 |
+
waveform = waveform - np.mean(waveform)
|
| 48 |
+
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
|
| 49 |
+
return waveform * 0.5
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def read_wav_file(filename, segment_length):
|
| 53 |
+
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
|
| 54 |
+
waveform, sr = torchaudio.load(filename) # Faster!!!
|
| 55 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 56 |
+
waveform = waveform.numpy()[0, ...]
|
| 57 |
+
waveform = normalize_wav(waveform)
|
| 58 |
+
waveform = waveform[None, ...]
|
| 59 |
+
waveform = pad_wav(waveform, segment_length)
|
| 60 |
+
|
| 61 |
+
waveform = waveform / np.max(np.abs(waveform))
|
| 62 |
+
waveform = 0.5 * waveform
|
| 63 |
+
|
| 64 |
+
return waveform
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
|
| 68 |
+
assert fn_STFT is not None
|
| 69 |
+
|
| 70 |
+
# mixup
|
| 71 |
+
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
|
| 72 |
+
|
| 73 |
+
waveform = waveform[0, ...]
|
| 74 |
+
waveform = torch.FloatTensor(waveform)
|
| 75 |
+
|
| 76 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
| 77 |
+
|
| 78 |
+
fbank = torch.FloatTensor(fbank.T)
|
| 79 |
+
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
|
| 80 |
+
|
| 81 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
| 82 |
+
log_magnitudes_stft, target_length
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
return fbank, log_magnitudes_stft, waveform
|
audioldm/clap/__init__.py
ADDED
|
File without changes
|
audioldm/clap/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (152 Bytes). View file
|
|
|
audioldm/clap/__pycache__/encoders.cpython-39.pyc
ADDED
|
Binary file (5.1 kB). View file
|
|
|
audioldm/clap/encoders.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from audioldm.clap.open_clip import create_model
|
| 4 |
+
from audioldm.clap.training.data import get_audio_features
|
| 5 |
+
import torchaudio
|
| 6 |
+
from transformers import RobertaTokenizer
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CLAPAudioEmbeddingClassifierFreev2(nn.Module):
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
pretrained_path="",
|
| 14 |
+
key="class",
|
| 15 |
+
sampling_rate=16000,
|
| 16 |
+
embed_mode="audio",
|
| 17 |
+
amodel = "HTSAT-tiny",
|
| 18 |
+
unconditional_prob=0.1,
|
| 19 |
+
random_mute=False,
|
| 20 |
+
max_random_mute_portion=0.5,
|
| 21 |
+
training_mode=True,
|
| 22 |
+
):
|
| 23 |
+
super().__init__()
|
| 24 |
+
|
| 25 |
+
self.key = key
|
| 26 |
+
self.device = "cpu"
|
| 27 |
+
self.precision = "fp32"
|
| 28 |
+
self.amodel = amodel # or 'PANN-14'
|
| 29 |
+
self.tmodel = "roberta" # the best text encoder in our training
|
| 30 |
+
self.enable_fusion = False # False if you do not want to use the fusion model
|
| 31 |
+
self.fusion_type = "aff_2d"
|
| 32 |
+
self.pretrained = pretrained_path
|
| 33 |
+
self.embed_mode = embed_mode
|
| 34 |
+
self.embed_mode_orig = embed_mode
|
| 35 |
+
self.sampling_rate = sampling_rate
|
| 36 |
+
self.unconditional_prob = unconditional_prob
|
| 37 |
+
self.random_mute = random_mute
|
| 38 |
+
self.tokenize = RobertaTokenizer.from_pretrained("roberta-base")
|
| 39 |
+
self.max_random_mute_portion = max_random_mute_portion
|
| 40 |
+
self.training_mode = training_mode
|
| 41 |
+
self.model, self.model_cfg = create_model(
|
| 42 |
+
self.amodel,
|
| 43 |
+
self.tmodel,
|
| 44 |
+
self.pretrained,
|
| 45 |
+
precision=self.precision,
|
| 46 |
+
device=self.device,
|
| 47 |
+
enable_fusion=self.enable_fusion,
|
| 48 |
+
fusion_type=self.fusion_type,
|
| 49 |
+
)
|
| 50 |
+
for p in self.model.parameters():
|
| 51 |
+
p.requires_grad = False
|
| 52 |
+
|
| 53 |
+
self.model.eval()
|
| 54 |
+
|
| 55 |
+
def get_unconditional_condition(self, batchsize):
|
| 56 |
+
self.unconditional_token = self.model.get_text_embedding(
|
| 57 |
+
self.tokenizer(["", ""])
|
| 58 |
+
)[0:1]
|
| 59 |
+
return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0)
|
| 60 |
+
|
| 61 |
+
def batch_to_list(self, batch):
|
| 62 |
+
ret = []
|
| 63 |
+
for i in range(batch.size(0)):
|
| 64 |
+
ret.append(batch[i])
|
| 65 |
+
return ret
|
| 66 |
+
|
| 67 |
+
def make_decision(self, probability):
|
| 68 |
+
if float(torch.rand(1)) < probability:
|
| 69 |
+
return True
|
| 70 |
+
else:
|
| 71 |
+
return False
|
| 72 |
+
|
| 73 |
+
def random_uniform(self, start, end):
|
| 74 |
+
val = torch.rand(1).item()
|
| 75 |
+
return start + (end - start) * val
|
| 76 |
+
|
| 77 |
+
def _random_mute(self, waveform):
|
| 78 |
+
# waveform: [bs, t-steps]
|
| 79 |
+
t_steps = waveform.size(-1)
|
| 80 |
+
for i in range(waveform.size(0)):
|
| 81 |
+
mute_size = int(
|
| 82 |
+
self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion))
|
| 83 |
+
)
|
| 84 |
+
mute_start = int(self.random_uniform(0, t_steps - mute_size))
|
| 85 |
+
waveform[i, mute_start : mute_start + mute_size] = 0
|
| 86 |
+
return waveform
|
| 87 |
+
|
| 88 |
+
def cos_similarity(self, waveform, text):
|
| 89 |
+
# waveform: [bs, t_steps]
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
self.embed_mode = "audio"
|
| 92 |
+
audio_emb = self(waveform.cuda())
|
| 93 |
+
self.embed_mode = "text"
|
| 94 |
+
text_emb = self(text)
|
| 95 |
+
similarity = F.cosine_similarity(audio_emb, text_emb, dim=2), audio_emb, text_emb
|
| 96 |
+
return similarity.squeeze()
|
| 97 |
+
|
| 98 |
+
def forward(self, batch, key=None):
|
| 99 |
+
# If you want this conditioner to be unconditional, set self.unconditional_prob = 1.0
|
| 100 |
+
# If you want this conditioner to be fully conditional, set self.unconditional_prob = 0.0
|
| 101 |
+
if self.model.training == True and not self.training_mode:
|
| 102 |
+
print(
|
| 103 |
+
"The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters."
|
| 104 |
+
)
|
| 105 |
+
self.model, self.model_cfg = create_model(
|
| 106 |
+
self.amodel,
|
| 107 |
+
self.tmodel,
|
| 108 |
+
self.pretrained,
|
| 109 |
+
precision=self.precision,
|
| 110 |
+
device="cuda",
|
| 111 |
+
enable_fusion=self.enable_fusion,
|
| 112 |
+
fusion_type=self.fusion_type,
|
| 113 |
+
)
|
| 114 |
+
for p in self.model.parameters():
|
| 115 |
+
p.requires_grad = False
|
| 116 |
+
self.model.eval()
|
| 117 |
+
|
| 118 |
+
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
|
| 119 |
+
if self.embed_mode == "audio":
|
| 120 |
+
with torch.no_grad():
|
| 121 |
+
audio_dict_list = []
|
| 122 |
+
assert (
|
| 123 |
+
self.sampling_rate == 16000
|
| 124 |
+
), "We only support 16000 sampling rate"
|
| 125 |
+
if self.random_mute:
|
| 126 |
+
batch = self._random_mute(batch)
|
| 127 |
+
# batch: [bs, 1, t-samples]
|
| 128 |
+
batch = torchaudio.functional.resample(
|
| 129 |
+
batch, orig_freq=self.sampling_rate, new_freq=48000
|
| 130 |
+
)
|
| 131 |
+
for waveform in self.batch_to_list(batch):
|
| 132 |
+
audio_dict = {}
|
| 133 |
+
audio_dict = get_audio_features(
|
| 134 |
+
audio_dict,
|
| 135 |
+
waveform,
|
| 136 |
+
480000,
|
| 137 |
+
data_truncating="fusion",
|
| 138 |
+
data_filling="repeatpad",
|
| 139 |
+
audio_cfg=self.model_cfg["audio_cfg"],
|
| 140 |
+
)
|
| 141 |
+
audio_dict_list.append(audio_dict)
|
| 142 |
+
# [bs, 512]
|
| 143 |
+
embed = self.model.get_audio_embedding(audio_dict_list)
|
| 144 |
+
elif self.embed_mode == "text":
|
| 145 |
+
with torch.no_grad():
|
| 146 |
+
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
|
| 147 |
+
text_data = self.tokenizer(batch)
|
| 148 |
+
embed = self.model.get_text_embedding(text_data)
|
| 149 |
+
|
| 150 |
+
embed = embed.unsqueeze(1)
|
| 151 |
+
self.unconditional_token = self.model.get_text_embedding(
|
| 152 |
+
self.tokenizer(["", ""])
|
| 153 |
+
)[0:1]
|
| 154 |
+
|
| 155 |
+
for i in range(embed.size(0)):
|
| 156 |
+
if self.make_decision(self.unconditional_prob):
|
| 157 |
+
embed[i] = self.unconditional_token
|
| 158 |
+
|
| 159 |
+
# [bs, 1, 512]
|
| 160 |
+
return embed.detach()
|
| 161 |
+
|
| 162 |
+
def tokenizer(self, text):
|
| 163 |
+
result = self.tokenize(
|
| 164 |
+
text,
|
| 165 |
+
padding="max_length",
|
| 166 |
+
truncation=True,
|
| 167 |
+
max_length=512,
|
| 168 |
+
return_tensors="pt",
|
| 169 |
+
)
|
| 170 |
+
return {k: v.squeeze(0) for k, v in result.items()}
|
audioldm/clap/open_clip/__init__.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .factory import (
|
| 2 |
+
list_models,
|
| 3 |
+
create_model,
|
| 4 |
+
create_model_and_transforms,
|
| 5 |
+
add_model_config,
|
| 6 |
+
)
|
| 7 |
+
from .loss import ClipLoss, gather_features, LPLoss, lp_gather_features, LPMetrics
|
| 8 |
+
from .model import (
|
| 9 |
+
CLAP,
|
| 10 |
+
CLAPTextCfg,
|
| 11 |
+
CLAPVisionCfg,
|
| 12 |
+
CLAPAudioCfp,
|
| 13 |
+
convert_weights_to_fp16,
|
| 14 |
+
trace_model,
|
| 15 |
+
)
|
| 16 |
+
from .openai import load_openai_model, list_openai_models
|
| 17 |
+
from .pretrained import (
|
| 18 |
+
list_pretrained,
|
| 19 |
+
list_pretrained_tag_models,
|
| 20 |
+
list_pretrained_model_tags,
|
| 21 |
+
get_pretrained_url,
|
| 22 |
+
download_pretrained,
|
| 23 |
+
)
|
| 24 |
+
from .tokenizer import SimpleTokenizer, tokenize
|
| 25 |
+
from .transform import image_transform
|
audioldm/clap/open_clip/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (958 Bytes). View file
|
|
|
audioldm/clap/open_clip/__pycache__/factory.cpython-39.pyc
ADDED
|
Binary file (6.67 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/feature_fusion.cpython-39.pyc
ADDED
|
Binary file (4.17 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/htsat.cpython-39.pyc
ADDED
|
Binary file (30.8 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/loss.cpython-39.pyc
ADDED
|
Binary file (8.06 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/model.cpython-39.pyc
ADDED
|
Binary file (23.8 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/openai.cpython-39.pyc
ADDED
|
Binary file (4.55 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/pann_model.cpython-39.pyc
ADDED
|
Binary file (13.3 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/pretrained.cpython-39.pyc
ADDED
|
Binary file (5.09 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/timm_model.cpython-39.pyc
ADDED
|
Binary file (3.4 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/tokenizer.cpython-39.pyc
ADDED
|
Binary file (7.42 kB). View file
|
|
|
audioldm/clap/open_clip/__pycache__/transform.cpython-39.pyc
ADDED
|
Binary file (974 Bytes). View file
|
|
|
audioldm/clap/open_clip/__pycache__/utils.cpython-39.pyc
ADDED
|
Binary file (9.83 kB). View file
|
|
|