Spaces:
Sleeping
Sleeping
File size: 10,534 Bytes
c64a3e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import pandas as pd
import json
from datetime import datetime
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import requests
app = FastAPI(title="HTS to HSN Classifier", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ClassificationRequest(BaseModel):
hts_code_or_desc: str
class ClassificationResponse(BaseModel):
HSN_Code: str | None
HSN_Description: str | None
Confidence: str
Reasoning: str
class HuggingFaceInferenceClient:
def __init__(self, model_name: str = "meta-llama/Meta-Llama-3-8B-Instruct", api_token: str = None):
self.model_name = model_name
self.api_token = api_token or ""
if not self.api_token:
raise ValueError("Hugging Face API token not provided")
self.headers = {
"Authorization": f"Bearer {self.api_token}",
"Content-Type": "application/json"
}
# Fixed API URL - use the correct inference endpoint
self.api_url = f"https://api-inference.huggingface.co/models/{self.model_name}"
def invoke(self, prompt: str) -> str:
# Fixed payload structure for Hugging Face Inference API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 500,
"temperature": 0.6,
"top_p": 0.95,
"return_full_text": False
}
}
try:
response = requests.post(self.api_url, json=payload, headers=self.headers, timeout=60)
response.raise_for_status()
data = response.json()
# Handle different response formats
if isinstance(data, list) and len(data) > 0:
if "generated_text" in data[0]:
return data[0]["generated_text"]
elif "text" in data[0]:
return data[0]["text"]
elif isinstance(data, dict):
if "generated_text" in data:
return data["generated_text"]
elif "text" in data:
return data["text"]
return str(data)
except requests.exceptions.RequestException as e:
print(f"API request failed: {e}")
raise Exception(f"Hugging Face API error: {e}")
except json.JSONDecodeError as e:
print(f"JSON decode error: {e}")
raise Exception(f"Invalid JSON response from API: {e}")
@app.on_event("startup")
async def startup_event():
try:
global vs_hts, vs_hsn, df_hts, df_hsn, llm_client, hts_code_col, hts_desc_col, hsn_code_col, hsn_desc_col
hts_path = "data/Htsdata.xlsx"
hsn_path = "data/HSN_SAC.xlsx"
cached_hts_vector_path = "data/faiss_hts_store"
cached_hsn_vector_path = "data/faiss_hsn_store"
print("Loading HSN data from:", hsn_path)
hts_code_col = "HTS Number"
hts_desc_col = "Description"
hsn_code_col = "HSN_CD"
hsn_desc_col = "HSN_Description"
df_hts = pd.read_excel(hts_path)
df_hts.columns = df_hts.columns.str.strip()
df_hsn = pd.read_excel(hsn_path)
df_hsn.columns = df_hsn.columns.str.strip()
df_hsn[hsn_code_col] = df_hsn[hsn_code_col].astype(str)
# Initialize with correct model name
llm_client = HuggingFaceInferenceClient(model_name="meta-llama/Meta-Llama-3-8B-Instruct")
print("β
Application started successfully!")
except Exception as e:
print(f"β Startup error: {e}")
raise e
@app.get("/health")
async def health_check():
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
def extract_structure(code: str):
code = "".join(filter(str.isdigit, str(code)))
return {
"chapter": code[:4] if len(code) >= 4 else None,
"heading": code[:6] if len(code) >= 6 else None,
"hsn8": code[:8] if len(code) >= 8 else code,
"full": code
}
def extract_json_from_text(text: str) -> dict:
"""Extract JSON from text response, handling various formats."""
text = text.strip()
# Find JSON content between braces
start_idx = text.find('{')
end_idx = text.rfind('}')
if start_idx != -1 and end_idx != -1 and start_idx < end_idx:
json_str = text[start_idx:end_idx + 1]
try:
return json.loads(json_str)
except json.JSONDecodeError:
pass
# If JSON extraction fails, try to parse key-value pairs
try:
lines = text.split('\n')
result = {}
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
key = key.strip().strip('"\'')
value = value.strip().strip('",\'')
if key in ['HSN_Code', 'HSN_Description', 'Confidence', 'Reasoning']:
result[key] = value
if len(result) >= 2: # At least some keys found
return result
except:
pass
return None
def map_hts_to_hsn(hts_code_or_desc: str):
reasoning_parts = []
if hts_code_or_desc.isdigit():
struct = extract_structure(hts_code_or_desc)
reasoning_parts.append(f"Input HTS code: {struct['full']}")
hts_match = df_hts[df_hts[hts_code_col].astype(str).str.startswith(struct["chapter"])]
hts_desc_list = hts_match[hts_desc_col].head(3).tolist() if not hts_match.empty else []
hts_desc_text = "; ".join(hts_desc_list) if hts_desc_list else "No HTS description found."
reasoning_parts.append(f"HTS Chapter {struct['chapter']}: {hts_desc_text}")
hsn_match = df_hsn[df_hsn[hsn_code_col] == struct["hsn8"]]
if not hsn_match.empty:
best_match = hsn_match.iloc[0]
reasoning_parts.append(f"Exact 8-digit HSN {struct['hsn8']} found.")
return {
"HSN_Code": best_match[hsn_code_col],
"HSN_Description": best_match[hsn_desc_col],
"Confidence": "High",
"Reasoning": " ".join(reasoning_parts)
}
fallback_heading_match = df_hsn[df_hsn[hsn_code_col].str.startswith(struct["heading"])]
if not fallback_heading_match.empty:
fallback_heading = fallback_heading_match.iloc[0]
reasoning_parts.append(f"No exact 8-digit HSN. Fallback heading {struct['heading']} found.")
# Improved prompt with better formatting
system_prompt = "You are an expert in Indian HSN classification. Respond only with valid JSON containing the keys: HSN_Code, HSN_Description, Confidence, Reasoning."
user_prompt = f"""
Input HTS code: {struct['full']}
HTS Description: {hts_desc_text}
Fallback HSN heading: {fallback_heading[hsn_code_col]} - {fallback_heading[hsn_desc_col]}
Based on this information, provide the most appropriate 8-digit HSN code and description.
Required JSON format:
{{
"HSN_Code": "XXXXXXXX",
"HSN_Description": "description here",
"Confidence": "High/Medium/Low",
"Reasoning": "explanation here"
}}
"""
full_prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n{user_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
try:
llm_response = llm_client.invoke(full_prompt).strip()
print(f"LLM Response: {llm_response}") # Debug logging
parsed_response = extract_json_from_text(llm_response)
if parsed_response and all(key in parsed_response for key in ["HSN_Code", "HSN_Description"]):
# Ensure all required keys are present with defaults
return {
"HSN_Code": parsed_response.get("HSN_Code"),
"HSN_Description": parsed_response.get("HSN_Description"),
"Confidence": parsed_response.get("Confidence", "Medium"),
"Reasoning": parsed_response.get("Reasoning", "LLM classification")
}
else:
print(f"Invalid LLM response format: {parsed_response}")
except Exception as e:
print(f"LLM failed: {e}")
# Fallback if LLM fails
return {
"HSN_Code": fallback_heading[hsn_code_col],
"HSN_Description": fallback_heading[hsn_desc_col],
"Confidence": "Medium",
"Reasoning": " ".join(reasoning_parts) + " LLM failed, using fallback 6-digit heading."
}
chapter_match = df_hsn[df_hsn[hsn_code_col].str.startswith(struct["chapter"][:4])]
if not chapter_match.empty:
best_match = chapter_match.iloc[0]
reasoning_parts.append(f"No heading match. Fallback to chapter {struct['chapter'][:4]}.")
return {
"HSN_Code": best_match[hsn_code_col],
"HSN_Description": best_match[hsn_desc_col],
"Confidence": "Low",
"Reasoning": " ".join(reasoning_parts)
}
return {
"HSN_Code": None,
"HSN_Description": None,
"Confidence": "Low",
"Reasoning": " ".join(reasoning_parts) + " No HSN match found."
}
else:
reasoning_parts.append("Input is description. Semantic search not implemented for Hugging Face deployment.")
return {"HSN_Code": None, "HSN_Description": None, "Confidence": "Low",
"Reasoning": "Description search not available in this deployment."}
@app.post("/classify", response_model=ClassificationResponse)
async def classify_hts(request: ClassificationRequest):
try:
result = map_hts_to_hsn(request.hts_code_or_desc)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=f"Classification error: {str(e)}")
@app.get("/")
async def root():
return {"message": "HTS to HSN Classification API", "status": "running"}
if __name__ == "__main__":
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |