Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +22 -0
- app.py +274 -0
- requirements.txt +13 -0
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install -y \
|
6 |
+
gcc \
|
7 |
+
g++ \
|
8 |
+
make \
|
9 |
+
curl \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
COPY requirements.txt .
|
13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
+
|
15 |
+
COPY . .
|
16 |
+
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
20 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
21 |
+
|
22 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
from datetime import datetime
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from pydantic import BaseModel
|
8 |
+
import uvicorn
|
9 |
+
import requests
|
10 |
+
|
11 |
+
app = FastAPI(title="HTS to HSN Classifier", version="1.0.0")
|
12 |
+
|
13 |
+
app.add_middleware(
|
14 |
+
CORSMiddleware,
|
15 |
+
allow_origins=["*"],
|
16 |
+
allow_credentials=True,
|
17 |
+
allow_methods=["*"],
|
18 |
+
allow_headers=["*"],
|
19 |
+
)
|
20 |
+
|
21 |
+
class ClassificationRequest(BaseModel):
|
22 |
+
hts_code_or_desc: str
|
23 |
+
|
24 |
+
class ClassificationResponse(BaseModel):
|
25 |
+
HSN_Code: str | None
|
26 |
+
HSN_Description: str | None
|
27 |
+
Confidence: str
|
28 |
+
Reasoning: str
|
29 |
+
|
30 |
+
class HuggingFaceInferenceClient:
|
31 |
+
def __init__(self, model_name: str = "meta-llama/Meta-Llama-3-8B-Instruct", api_token: str = None):
|
32 |
+
self.model_name = model_name
|
33 |
+
self.api_token = api_token or ""
|
34 |
+
if not self.api_token:
|
35 |
+
raise ValueError("Hugging Face API token not provided")
|
36 |
+
self.headers = {
|
37 |
+
"Authorization": f"Bearer {self.api_token}",
|
38 |
+
"Content-Type": "application/json"
|
39 |
+
}
|
40 |
+
# Fixed API URL - use the correct inference endpoint
|
41 |
+
self.api_url = f"https://api-inference.huggingface.co/models/{self.model_name}"
|
42 |
+
|
43 |
+
def invoke(self, prompt: str) -> str:
|
44 |
+
# Fixed payload structure for Hugging Face Inference API
|
45 |
+
payload = {
|
46 |
+
"inputs": prompt,
|
47 |
+
"parameters": {
|
48 |
+
"max_new_tokens": 500,
|
49 |
+
"temperature": 0.6,
|
50 |
+
"top_p": 0.95,
|
51 |
+
"return_full_text": False
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
try:
|
56 |
+
response = requests.post(self.api_url, json=payload, headers=self.headers, timeout=60)
|
57 |
+
response.raise_for_status()
|
58 |
+
data = response.json()
|
59 |
+
|
60 |
+
# Handle different response formats
|
61 |
+
if isinstance(data, list) and len(data) > 0:
|
62 |
+
if "generated_text" in data[0]:
|
63 |
+
return data[0]["generated_text"]
|
64 |
+
elif "text" in data[0]:
|
65 |
+
return data[0]["text"]
|
66 |
+
elif isinstance(data, dict):
|
67 |
+
if "generated_text" in data:
|
68 |
+
return data["generated_text"]
|
69 |
+
elif "text" in data:
|
70 |
+
return data["text"]
|
71 |
+
|
72 |
+
return str(data)
|
73 |
+
|
74 |
+
except requests.exceptions.RequestException as e:
|
75 |
+
print(f"API request failed: {e}")
|
76 |
+
raise Exception(f"Hugging Face API error: {e}")
|
77 |
+
except json.JSONDecodeError as e:
|
78 |
+
print(f"JSON decode error: {e}")
|
79 |
+
raise Exception(f"Invalid JSON response from API: {e}")
|
80 |
+
|
81 |
+
|
82 |
+
@app.on_event("startup")
|
83 |
+
async def startup_event():
|
84 |
+
try:
|
85 |
+
global vs_hts, vs_hsn, df_hts, df_hsn, llm_client, hts_code_col, hts_desc_col, hsn_code_col, hsn_desc_col
|
86 |
+
|
87 |
+
hts_path = "data/Htsdata.xlsx"
|
88 |
+
hsn_path = "data/HSN_SAC.xlsx"
|
89 |
+
cached_hts_vector_path = "data/faiss_hts_store"
|
90 |
+
cached_hsn_vector_path = "data/faiss_hsn_store"
|
91 |
+
|
92 |
+
print("Loading HSN data from:", hsn_path)
|
93 |
+
|
94 |
+
hts_code_col = "HTS Number"
|
95 |
+
hts_desc_col = "Description"
|
96 |
+
hsn_code_col = "HSN_CD"
|
97 |
+
hsn_desc_col = "HSN_Description"
|
98 |
+
|
99 |
+
df_hts = pd.read_excel(hts_path)
|
100 |
+
df_hts.columns = df_hts.columns.str.strip()
|
101 |
+
df_hsn = pd.read_excel(hsn_path)
|
102 |
+
df_hsn.columns = df_hsn.columns.str.strip()
|
103 |
+
df_hsn[hsn_code_col] = df_hsn[hsn_code_col].astype(str)
|
104 |
+
|
105 |
+
# Initialize with correct model name
|
106 |
+
llm_client = HuggingFaceInferenceClient(model_name="meta-llama/Meta-Llama-3-8B-Instruct")
|
107 |
+
|
108 |
+
print("✅ Application started successfully!")
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
print(f"❌ Startup error: {e}")
|
112 |
+
raise e
|
113 |
+
|
114 |
+
@app.get("/health")
|
115 |
+
async def health_check():
|
116 |
+
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
|
117 |
+
|
118 |
+
def extract_structure(code: str):
|
119 |
+
code = "".join(filter(str.isdigit, str(code)))
|
120 |
+
return {
|
121 |
+
"chapter": code[:4] if len(code) >= 4 else None,
|
122 |
+
"heading": code[:6] if len(code) >= 6 else None,
|
123 |
+
"hsn8": code[:8] if len(code) >= 8 else code,
|
124 |
+
"full": code
|
125 |
+
}
|
126 |
+
|
127 |
+
def extract_json_from_text(text: str) -> dict:
|
128 |
+
"""Extract JSON from text response, handling various formats."""
|
129 |
+
text = text.strip()
|
130 |
+
|
131 |
+
# Find JSON content between braces
|
132 |
+
start_idx = text.find('{')
|
133 |
+
end_idx = text.rfind('}')
|
134 |
+
|
135 |
+
if start_idx != -1 and end_idx != -1 and start_idx < end_idx:
|
136 |
+
json_str = text[start_idx:end_idx + 1]
|
137 |
+
try:
|
138 |
+
return json.loads(json_str)
|
139 |
+
except json.JSONDecodeError:
|
140 |
+
pass
|
141 |
+
|
142 |
+
# If JSON extraction fails, try to parse key-value pairs
|
143 |
+
try:
|
144 |
+
lines = text.split('\n')
|
145 |
+
result = {}
|
146 |
+
for line in lines:
|
147 |
+
if ':' in line:
|
148 |
+
key, value = line.split(':', 1)
|
149 |
+
key = key.strip().strip('"\'')
|
150 |
+
value = value.strip().strip('",\'')
|
151 |
+
if key in ['HSN_Code', 'HSN_Description', 'Confidence', 'Reasoning']:
|
152 |
+
result[key] = value
|
153 |
+
|
154 |
+
if len(result) >= 2: # At least some keys found
|
155 |
+
return result
|
156 |
+
except:
|
157 |
+
pass
|
158 |
+
|
159 |
+
return None
|
160 |
+
|
161 |
+
def map_hts_to_hsn(hts_code_or_desc: str):
|
162 |
+
reasoning_parts = []
|
163 |
+
|
164 |
+
if hts_code_or_desc.isdigit():
|
165 |
+
struct = extract_structure(hts_code_or_desc)
|
166 |
+
reasoning_parts.append(f"Input HTS code: {struct['full']}")
|
167 |
+
|
168 |
+
hts_match = df_hts[df_hts[hts_code_col].astype(str).str.startswith(struct["chapter"])]
|
169 |
+
hts_desc_list = hts_match[hts_desc_col].head(3).tolist() if not hts_match.empty else []
|
170 |
+
hts_desc_text = "; ".join(hts_desc_list) if hts_desc_list else "No HTS description found."
|
171 |
+
reasoning_parts.append(f"HTS Chapter {struct['chapter']}: {hts_desc_text}")
|
172 |
+
|
173 |
+
hsn_match = df_hsn[df_hsn[hsn_code_col] == struct["hsn8"]]
|
174 |
+
if not hsn_match.empty:
|
175 |
+
best_match = hsn_match.iloc[0]
|
176 |
+
reasoning_parts.append(f"Exact 8-digit HSN {struct['hsn8']} found.")
|
177 |
+
return {
|
178 |
+
"HSN_Code": best_match[hsn_code_col],
|
179 |
+
"HSN_Description": best_match[hsn_desc_col],
|
180 |
+
"Confidence": "High",
|
181 |
+
"Reasoning": " ".join(reasoning_parts)
|
182 |
+
}
|
183 |
+
|
184 |
+
fallback_heading_match = df_hsn[df_hsn[hsn_code_col].str.startswith(struct["heading"])]
|
185 |
+
if not fallback_heading_match.empty:
|
186 |
+
fallback_heading = fallback_heading_match.iloc[0]
|
187 |
+
reasoning_parts.append(f"No exact 8-digit HSN. Fallback heading {struct['heading']} found.")
|
188 |
+
|
189 |
+
# Improved prompt with better formatting
|
190 |
+
system_prompt = "You are an expert in Indian HSN classification. Respond only with valid JSON containing the keys: HSN_Code, HSN_Description, Confidence, Reasoning."
|
191 |
+
|
192 |
+
user_prompt = f"""
|
193 |
+
Input HTS code: {struct['full']}
|
194 |
+
HTS Description: {hts_desc_text}
|
195 |
+
Fallback HSN heading: {fallback_heading[hsn_code_col]} - {fallback_heading[hsn_desc_col]}
|
196 |
+
|
197 |
+
Based on this information, provide the most appropriate 8-digit HSN code and description.
|
198 |
+
|
199 |
+
Required JSON format:
|
200 |
+
{{
|
201 |
+
"HSN_Code": "XXXXXXXX",
|
202 |
+
"HSN_Description": "description here",
|
203 |
+
"Confidence": "High/Medium/Low",
|
204 |
+
"Reasoning": "explanation here"
|
205 |
+
}}
|
206 |
+
"""
|
207 |
+
|
208 |
+
full_prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n{user_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
|
209 |
+
|
210 |
+
try:
|
211 |
+
llm_response = llm_client.invoke(full_prompt).strip()
|
212 |
+
print(f"LLM Response: {llm_response}") # Debug logging
|
213 |
+
|
214 |
+
parsed_response = extract_json_from_text(llm_response)
|
215 |
+
|
216 |
+
if parsed_response and all(key in parsed_response for key in ["HSN_Code", "HSN_Description"]):
|
217 |
+
# Ensure all required keys are present with defaults
|
218 |
+
return {
|
219 |
+
"HSN_Code": parsed_response.get("HSN_Code"),
|
220 |
+
"HSN_Description": parsed_response.get("HSN_Description"),
|
221 |
+
"Confidence": parsed_response.get("Confidence", "Medium"),
|
222 |
+
"Reasoning": parsed_response.get("Reasoning", "LLM classification")
|
223 |
+
}
|
224 |
+
else:
|
225 |
+
print(f"Invalid LLM response format: {parsed_response}")
|
226 |
+
|
227 |
+
except Exception as e:
|
228 |
+
print(f"LLM failed: {e}")
|
229 |
+
|
230 |
+
# Fallback if LLM fails
|
231 |
+
return {
|
232 |
+
"HSN_Code": fallback_heading[hsn_code_col],
|
233 |
+
"HSN_Description": fallback_heading[hsn_desc_col],
|
234 |
+
"Confidence": "Medium",
|
235 |
+
"Reasoning": " ".join(reasoning_parts) + " LLM failed, using fallback 6-digit heading."
|
236 |
+
}
|
237 |
+
|
238 |
+
chapter_match = df_hsn[df_hsn[hsn_code_col].str.startswith(struct["chapter"][:4])]
|
239 |
+
if not chapter_match.empty:
|
240 |
+
best_match = chapter_match.iloc[0]
|
241 |
+
reasoning_parts.append(f"No heading match. Fallback to chapter {struct['chapter'][:4]}.")
|
242 |
+
return {
|
243 |
+
"HSN_Code": best_match[hsn_code_col],
|
244 |
+
"HSN_Description": best_match[hsn_desc_col],
|
245 |
+
"Confidence": "Low",
|
246 |
+
"Reasoning": " ".join(reasoning_parts)
|
247 |
+
}
|
248 |
+
|
249 |
+
return {
|
250 |
+
"HSN_Code": None,
|
251 |
+
"HSN_Description": None,
|
252 |
+
"Confidence": "Low",
|
253 |
+
"Reasoning": " ".join(reasoning_parts) + " No HSN match found."
|
254 |
+
}
|
255 |
+
|
256 |
+
else:
|
257 |
+
reasoning_parts.append("Input is description. Semantic search not implemented for Hugging Face deployment.")
|
258 |
+
return {"HSN_Code": None, "HSN_Description": None, "Confidence": "Low",
|
259 |
+
"Reasoning": "Description search not available in this deployment."}
|
260 |
+
|
261 |
+
@app.post("/classify", response_model=ClassificationResponse)
|
262 |
+
async def classify_hts(request: ClassificationRequest):
|
263 |
+
try:
|
264 |
+
result = map_hts_to_hsn(request.hts_code_or_desc)
|
265 |
+
return result
|
266 |
+
except Exception as e:
|
267 |
+
raise HTTPException(status_code=500, detail=f"Classification error: {str(e)}")
|
268 |
+
|
269 |
+
@app.get("/")
|
270 |
+
async def root():
|
271 |
+
return {"message": "HTS to HSN Classification API", "status": "running"}
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.0.3
|
2 |
+
openpyxl==3.1.2
|
3 |
+
faiss-cpu==1.7.4
|
4 |
+
langchain-community==0.0.34
|
5 |
+
python-dotenv==1.0.1
|
6 |
+
fastapi==0.104.1
|
7 |
+
uvicorn[standard]==0.24.0
|
8 |
+
pydantic==2.5.0
|
9 |
+
requests==2.31.0
|
10 |
+
numpy==1.24.3
|
11 |
+
httpx==0.27.0
|
12 |
+
transformers==4.40.0
|
13 |
+
torch==2.3.0
|