inspekta_deck / src /IMPLEMENTATION_ROADMAP.md
amiguel's picture
Upload 13 files
29104c7 verified

DigiTwin Implementation Roadmap

Current Status: βœ… Production Ready

  • βœ… Core application functionality
  • βœ… Data upload and processing
  • βœ… FPSO visualizations
  • βœ… Pivot table analytics
  • βœ… Database persistence
  • βœ… Responsive UI with custom styling
  • βœ… Sidebar layout optimizations

Phase 1: Data Preprocessing Module

Timeline: Week 1-2 Status: πŸ”„ Planned

Tasks:

  • Create preprocessing.py module
  • Implement column analysis functionality
  • Add data cleaning pipeline
  • Integrate with main application
  • Test with existing datasets

Deliverables:

  • Preprocessing module with column removal logic
  • Data size reduction by 40-60%
  • Improved loading performance

Phase 2: Feature Engineering

Timeline: Week 3-4 Status: πŸ”„ Planned

Tasks:

  • Create feature_engineering.py module
  • Implement Main WorkCtr categorization
  • Add temporal and spatial features
  • Update database schema
  • Integrate with analytics

Deliverables:

  • Enhanced dataset with derived features
  • Improved analytics capabilities
  • Better insights generation

Phase 3: LLM Integration with RAG

Timeline: Week 5-8 Status: πŸ”„ Planned

Tasks:

  • Set up vector database (Chroma/FAISS)
  • Implement LLM model integration
  • Create RAG query system
  • Add chat interface to Streamlit
  • Test and optimize

Deliverables:

  • Natural language query capability
  • Intelligent insights generation
  • Enhanced user experience

Phase 4: Integration & Testing

Timeline: Week 9-10 Status: πŸ”„ Planned

Tasks:

  • Integrate all modules
  • Performance testing
  • User acceptance testing
  • Documentation updates
  • Production deployment

Deliverables:

  • Fully integrated enhanced application
  • Performance benchmarks
  • User documentation

Success Metrics

Performance Targets:

  • ⚑ 50% faster data loading
  • πŸ’Ύ 40-60% data size reduction
  • 🧠 <3 second RAG query response
  • πŸ“Š >90% query accuracy

User Experience:

  • 🎯 Natural language interaction
  • πŸ“ˆ Enhanced analytics insights
  • πŸ” Improved data discovery
  • πŸš€ Better overall performance

Notes

  • All enhancements maintain backward compatibility
  • Modular design for easy integration
  • Focus on user experience and performance
  • Scalable architecture for future growth

Last Updated: December 2024 Next Review: [Date]