Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -1,5 +1,3 @@
1
- import warnings
2
- warnings.filterwarnings('ignore')
3
 
4
  import numpy as np
5
  import pandas as pd
@@ -17,7 +15,7 @@ from sklearn.metrics import classification_report, accuracy_score
17
  from sklearn.tree import DecisionTreeClassifier
18
  from sklearn.ensemble import RandomForestClassifier
19
 
20
- %matplotlib inline
21
 
22
  # Set the resolution of the plotted figures
23
  plt.rcParams['figure.dpi'] = 200
@@ -25,9 +23,8 @@ plt.rcParams['figure.dpi'] = 200
25
  # Configure Seaborn plot styles: Set background color and use dark grid
26
  sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid')
27
 
28
- df = pd.read_csv("/content/heart.csv")
29
- df
30
- df.info()
31
 
32
  # Define the continuous features
33
  continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
@@ -428,7 +425,6 @@ plt.title("Recall for Positive Class across Models", fontweight='bold', fontsize
428
  plt.xlabel('Recall Value', fontsize=16)
429
  plt.show()
430
 
431
- !pip install gradio
432
  import gradio as gr
433
  import numpy as np
434
  from sklearn.ensemble import RandomForestClassifier
 
 
 
1
 
2
  import numpy as np
3
  import pandas as pd
 
15
  from sklearn.tree import DecisionTreeClassifier
16
  from sklearn.ensemble import RandomForestClassifier
17
 
18
+
19
 
20
  # Set the resolution of the plotted figures
21
  plt.rcParams['figure.dpi'] = 200
 
23
  # Configure Seaborn plot styles: Set background color and use dark grid
24
  sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid')
25
 
26
+ df = pd.read_csv("heart.csv")
27
+
 
28
 
29
  # Define the continuous features
30
  continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
 
425
  plt.xlabel('Recall Value', fontsize=16)
426
  plt.show()
427
 
 
428
  import gradio as gr
429
  import numpy as np
430
  from sklearn.ensemble import RandomForestClassifier