Spaces:
Sleeping
Sleeping
Update app.py
#2
by
Hemant0000
- opened
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import warnings
|
2 |
-
warnings.filterwarnings('ignore')
|
3 |
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
@@ -17,7 +15,7 @@ from sklearn.metrics import classification_report, accuracy_score
|
|
17 |
from sklearn.tree import DecisionTreeClassifier
|
18 |
from sklearn.ensemble import RandomForestClassifier
|
19 |
|
20 |
-
|
21 |
|
22 |
# Set the resolution of the plotted figures
|
23 |
plt.rcParams['figure.dpi'] = 200
|
@@ -25,9 +23,8 @@ plt.rcParams['figure.dpi'] = 200
|
|
25 |
# Configure Seaborn plot styles: Set background color and use dark grid
|
26 |
sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid')
|
27 |
|
28 |
-
df = pd.read_csv("
|
29 |
-
|
30 |
-
df.info()
|
31 |
|
32 |
# Define the continuous features
|
33 |
continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
|
@@ -428,7 +425,6 @@ plt.title("Recall for Positive Class across Models", fontweight='bold', fontsize
|
|
428 |
plt.xlabel('Recall Value', fontsize=16)
|
429 |
plt.show()
|
430 |
|
431 |
-
!pip install gradio
|
432 |
import gradio as gr
|
433 |
import numpy as np
|
434 |
from sklearn.ensemble import RandomForestClassifier
|
|
|
|
|
|
|
1 |
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
|
|
15 |
from sklearn.tree import DecisionTreeClassifier
|
16 |
from sklearn.ensemble import RandomForestClassifier
|
17 |
|
18 |
+
|
19 |
|
20 |
# Set the resolution of the plotted figures
|
21 |
plt.rcParams['figure.dpi'] = 200
|
|
|
23 |
# Configure Seaborn plot styles: Set background color and use dark grid
|
24 |
sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid')
|
25 |
|
26 |
+
df = pd.read_csv("heart.csv")
|
27 |
+
|
|
|
28 |
|
29 |
# Define the continuous features
|
30 |
continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
|
|
|
425 |
plt.xlabel('Recall Value', fontsize=16)
|
426 |
plt.show()
|
427 |
|
|
|
428 |
import gradio as gr
|
429 |
import numpy as np
|
430 |
from sklearn.ensemble import RandomForestClassifier
|