Spaces:
Running
Running
File size: 26,784 Bytes
ee1b999 1971175 b48ebfb ee1b999 b3aef2c ee1b999 2c742e8 ee1b999 2c742e8 ee1b999 0b78abd ad46ea8 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 ad46ea8 b36c3c5 0b78abd 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 ad46ea8 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 64716c3 b36c3c5 ad46ea8 b36c3c5 64716c3 2c742e8 64716c3 ad46ea8 64716c3 2c742e8 ad46ea8 64716c3 ee1b999 8bd1c00 ee1b999 1971175 ee1b999 1971175 85744c7 5064c71 ee1b999 1971175 ee1b999 64716c3 ee1b999 64716c3 ee1b999 2c742e8 ee1b999 64716c3 ee1b999 1971175 7f277d4 c22c48e 85744c7 1971175 941eea2 1971175 ee1b999 1971175 ee1b999 1971175 ee1b999 1971175 ee1b999 2c742e8 8bd1c00 1971175 ee1b999 941eea2 ee1b999 8bd1c00 ee1b999 941eea2 ee1b999 c22c48e aca1950 ee1b999 c22c48e aca1950 ee1b999 1971175 b3aef2c 1971175 cdccabc b3aef2c 1971175 b3aef2c 1971175 b3aef2c 1971175 b3aef2c 1971175 b3aef2c 1971175 b3aef2c 1971175 ee1b999 85744c7 ee1b999 aca1950 1971175 ee1b999 02a4349 aca1950 ee1b999 aca1950 c039999 aca1950 c039999 aca1950 ee1b999 1971175 ee1b999 1971175 ee1b999 aca1950 ee1b999 1971175 ee1b999 1971175 ee1b999 17162c9 f48fa14 1971175 ee1b999 1971175 85744c7 fed35d4 85744c7 fed35d4 8bd1c00 85744c7 fed35d4 85744c7 fed35d4 85744c7 fed35d4 85744c7 fed35d4 1971175 fed35d4 85744c7 fed35d4 1971175 ee1b999 1971175 dcfd58f 1971175 7b52df4 1971175 f48fa14 1971175 ee1b999 f48fa14 aca1950 8bd1c00 ee1b999 1971175 ee1b999 1971175 7b52df4 aca1950 8bd1c00 1971175 fed35d4 17162c9 fed35d4 17162c9 1971175 ee1b999 1971175 ee1b999 1971175 ee1b999 9181029 ee1b999 8bd1c00 ee1b999 1971175 b48ebfb fed35d4 b48ebfb fed35d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import logging
from typing import Optional
import base64
import html
import aliases
logger = logging.getLogger(__name__)
INFORMAL_TO_FORMAL_NAME_MAP = {
# Short Names
"lit": "Literature Understanding",
"code": "Code & Execution",
"data": "Data Analysis",
"discovery": "End-to-End Discovery",
# Validation Names
"arxivdigestables_validation": "ArxivDIGESTables-Clean",
"ArxivDIGESTables_Clean_validation": "ArxivDIGESTables-Clean",
"sqa_dev": "ScholarQA-CS2",
"ScholarQA_CS2_validation": "ScholarQA-CS2",
"litqa2_validation": "LitQA2-FullText",
"LitQA2_FullText_validation": "LitQA2-FullText",
"paper_finder_validation": "PaperFindingBench",
"PaperFindingBench_validation": "PaperFindingBench",
"paper_finder_litqa2_validation": "LitQA2-FullText-Search",
"LitQA2_FullText_Search_validation": "LitQA2-FullText-Search",
"discoverybench_validation": "DiscoveryBench",
"DiscoveryBench_validation": "DiscoveryBench",
"core_bench_validation": "CORE-Bench-Hard",
"CORE_Bench_Hard_validation": "CORE-Bench-Hard",
"ds1000_validation": "DS-1000",
"DS_1000_validation": "DS-1000",
"e2e_discovery_validation": "E2E-Bench",
"E2E_Bench_validation": "E2E-Bench",
"e2e_discovery_hard_validation": "E2E-Bench-Hard",
"E2E_Bench_Hard_validation": "E2E-Bench-Hard",
"super_validation": "SUPER-Expert",
"SUPER_Expert_validation": "SUPER-Expert",
# Test Names
"paper_finder_test": "PaperFindingBench",
"PaperFindingBench_test": "PaperFindingBench",
"paper_finder_litqa2_test": "LitQA2-FullText-Search",
"LitQA2_FullText_Search_test": "LitQA2-FullText-Search",
"sqa_test": "ScholarQA-CS2",
"ScholarQA_CS2_test": "ScholarQA-CS2",
"arxivdigestables_test": "ArxivDIGESTables-Clean",
"ArxivDIGESTables_Clean_test": "ArxivDIGESTables-Clean",
"litqa2_test": "LitQA2-FullText",
"LitQA2_FullText_test": "LitQA2-FullText",
"discoverybench_test": "DiscoveryBench",
"DiscoveryBench_test": "DiscoveryBench",
"core_bench_test": "CORE-Bench-Hard",
"CORE_Bench_Hard_test": "CORE-Bench-Hard",
"ds1000_test": "DS-1000",
"DS_1000_test": "DS-1000",
"e2e_discovery_test": "E2E-Bench",
"E2E_Bench_test": "E2E-Bench",
"e2e_discovery_hard_test": "E2E-Bench-Hard",
"E2E_Bench_Hard_test": "E2E-Bench-Hard",
"super_test": "SUPER-Expert",
"SUPER_Expert_test": "SUPER-Expert",
}
ORDER_MAP = {
'Overall_keys': [
'lit',
'code',
'data',
'discovery',
],
'Literature Understanding': [
'PaperFindingBench',
'LitQA2-FullText-Search',
'ScholarQA-CS2',
'LitQA2-FullText',
'ArxivDIGESTables-Clean'
],
'Code & Execution': [
'SUPER-Expert',
'CORE-Bench-Hard',
'DS-1000'
],
# Add other keys for 'Data Analysis' and 'Discovery' when/if we add more benchmarks in those categories
}
def _safe_round(value, digits=3):
"""Rounds a number if it's a valid float/int, otherwise returns it as is."""
return round(value, digits) if isinstance(value, (float, int)) and pd.notna(value) else value
def _pretty_column_name(raw_col: str) -> str:
"""
Takes a raw column name from the DataFrame and returns a "pretty" version.
Handles three cases:
1. Fixed names (e.g., 'User/organization' -> 'Submitter').
2. Dynamic names (e.g., 'ds1000_validation score' -> 'DS1000 Validation Score').
3. Fallback for any other names.
"""
# Case 1: Handle fixed, special-case mappings first.
fixed_mappings = {
'id': 'id',
'Agent': 'Agent',
'Agent description': 'Agent Description',
'User/organization': 'Submitter',
'Submission date': 'Date',
'Overall': 'Overall Score',
'Overall cost': 'Overall Cost',
'Logs': 'Logs',
'Openness': 'Openness',
'Agent tooling': 'Agent Tooling',
'LLM base': 'Models Used',
'Source': 'Source',
}
if raw_col in fixed_mappings:
return fixed_mappings[raw_col]
# Case 2: Handle dynamic names by finding the longest matching base name.
# We sort by length (desc) to match 'core_bench_validation' before 'core_bench'.
sorted_base_names = sorted(INFORMAL_TO_FORMAL_NAME_MAP.keys(), key=len, reverse=True)
for base_name in sorted_base_names:
if raw_col.startswith(base_name):
formal_name = INFORMAL_TO_FORMAL_NAME_MAP[base_name]
# Get the metric part (e.g., ' score' or ' cost 95% CI')
metric_part = raw_col[len(base_name):].strip()
# Capitalize the metric part correctly (e.g., 'score' -> 'Score')
pretty_metric = metric_part.capitalize()
return f"{formal_name} {pretty_metric}"
# Case 3: If no specific rule applies, just make it title case.
return raw_col.title()
def create_pretty_tag_map(raw_tag_map: dict, name_map: dict) -> dict:
"""
Converts a tag map with raw names into a tag map with pretty, formal names,
applying a specific, non-alphabetic sort order to the values.
"""
pretty_map = {}
# Helper to get pretty name with a fallback
def get_pretty(raw_name):
return name_map.get(raw_name, raw_name.replace("_", " "))
key_order = ORDER_MAP.get('Overall_keys', [])
sorted_keys = sorted(raw_tag_map.keys(), key=lambda x: key_order.index(x) if x in key_order else len(key_order))
for raw_key in sorted_keys:
raw_value_list = raw_tag_map[raw_key]
pretty_key = get_pretty(raw_key)
pretty_value_list = [get_pretty(raw_val) for raw_val in raw_value_list]
# Get the unique values first
unique_values = list(set(pretty_value_list))
# Get the custom order for the current key. Fall back to an empty list.
custom_order = ORDER_MAP.get(pretty_key, [])
def sort_key(value):
if value in custom_order:
return 0, custom_order.index(value)
else:
return 1, value
pretty_map[pretty_key] = sorted(unique_values, key=sort_key)
print(f"Created pretty tag map: {pretty_map}")
return pretty_map
def transform_raw_dataframe(raw_df: pd.DataFrame) -> pd.DataFrame:
"""
Transforms a raw leaderboard DataFrame into a presentation-ready format.
This function performs two main actions:
1. Rounds all numeric metric values (columns containing 'score' or 'cost').
2. Renames all columns to a "pretty", human-readable format.
Args:
raw_df (pd.DataFrame): The DataFrame with raw data and column names
like 'agent_name', 'overall/score', 'tag/code/cost'.
Returns:
pd.DataFrame: A new DataFrame ready for display.
"""
if not isinstance(raw_df, pd.DataFrame):
raise TypeError("Input 'raw_df' must be a pandas DataFrame.")
df = raw_df.copy()
# Create the mapping for pretty column names
pretty_cols_map = {col: _pretty_column_name(col) for col in df.columns}
# Rename the columns and return the new DataFrame
transformed_df = df.rename(columns=pretty_cols_map)
# Apply safe rounding to all metric columns
for col in transformed_df.columns:
if 'Score' in col or 'Cost' in col:
transformed_df[col] = transformed_df[col].apply(_safe_round)
logger.info("Raw DataFrame transformed: numbers rounded and columns renamed.")
return transformed_df
class DataTransformer:
"""
Visualizes a pre-processed leaderboard DataFrame.
This class takes a "pretty" DataFrame and a tag map, and provides
methods to view filtered versions of the data and generate plots.
"""
def __init__(self, dataframe: pd.DataFrame, tag_map: dict[str, list[str]]):
"""
Initializes the viewer.
Args:
dataframe (pd.DataFrame): The presentation-ready leaderboard data.
tag_map (dict): A map of formal tag names to formal task names.
"""
if not isinstance(dataframe, pd.DataFrame):
raise TypeError("Input 'dataframe' must be a pandas DataFrame.")
if not isinstance(tag_map, dict):
raise TypeError("Input 'tag_map' must be a dictionary.")
self.data = dataframe
self.tag_map = tag_map
logger.info(f"DataTransformer initialized with a DataFrame of shape {self.data.shape}.")
def view(
self,
tag: Optional[str] = "Overall", # Default to "Overall" for clarity
use_plotly: bool = False,
) -> tuple[pd.DataFrame, dict[str, go.Figure]]:
"""
Generates a filtered view of the DataFrame and a corresponding scatter plot.
"""
if self.data.empty:
logger.warning("No data available to view.")
return self.data, {}
# --- 1. Determine Primary and Group Metrics Based on the Tag ---
if tag is None or tag == "Overall":
primary_metric = "Overall"
group_metrics = list(self.tag_map.keys())
else:
primary_metric = tag
# For a specific tag, the group is its list of sub-tasks.
group_metrics = self.tag_map.get(tag, [])
# --- 2. Sort the DataFrame by the Primary Score ---
primary_score_col = f"{primary_metric} Score"
df_sorted = self.data
if primary_score_col in self.data.columns:
df_sorted = self.data.sort_values(primary_score_col, ascending=False, na_position='last')
df_view = df_sorted.copy()
# --- 3. Add Columns for Agent Openness and Tooling ---
base_cols = ["id","Agent","Submitter","Models Used","Source"]
new_cols = ["Openness", "Agent Tooling"]
ending_cols = ["Date", "Logs"]
metrics_to_display = [primary_score_col, f"{primary_metric} Cost"]
for item in group_metrics:
metrics_to_display.append(f"{item} Score")
metrics_to_display.append(f"{item} Cost")
final_cols_ordered = new_cols + base_cols + list(dict.fromkeys(metrics_to_display)) + ending_cols
for col in final_cols_ordered:
if col not in df_view.columns:
df_view[col] = pd.NA
# The final selection will now use the new column structure
df_view = df_view[final_cols_ordered].reset_index(drop=True)
cols = len(final_cols_ordered)
# Calculated and add "Categories Attempted" column
if primary_metric == "Overall":
def calculate_attempted(row):
main_categories = ['Literature Understanding', 'Code & Execution', 'Data Analysis', 'End-to-End Discovery']
count = sum(1 for category in main_categories if row.get(f"{category} Score") != 0.0)
return f"{count}/4"
# Apply the function row-wise to create the new column
attempted_column = df_view.apply(calculate_attempted, axis=1)
# Insert the new column at a nice position (e.g., after "Date")
df_view.insert((cols - 2), "Categories Attempted", attempted_column)
else:
total_benchmarks = len(group_metrics)
def calculate_benchmarks_attempted(row):
# Count how many benchmarks in this category have COST data reported
count = sum(1 for benchmark in group_metrics if pd.notna(row.get(f"{benchmark} Score")))
return f"{count}/{total_benchmarks}"
# Insert the new column, for example, after "Date"
df_view.insert((cols - 2), "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1))
# --- 4. Generate the Scatter Plot for the Primary Metric ---
plots: dict[str, go.Figure] = {}
if use_plotly:
primary_cost_col = f"{primary_metric} Cost"
# Check if the primary score and cost columns exist in the FINAL view
if primary_score_col in df_view.columns and primary_cost_col in df_view.columns:
fig = _plot_scatter_plotly(
data=df_view,
x=primary_cost_col,
y=primary_score_col,
agent_col="Agent",
name=primary_metric
)
# Use a consistent key for easy retrieval later
plots['scatter_plot'] = fig
else:
logger.warning(
f"Skipping plot for '{primary_metric}': score column '{primary_score_col}' "
f"or cost column '{primary_cost_col}' not found."
)
# Add an empty figure to avoid downstream errors
plots['scatter_plot'] = go.Figure()
return df_view, plots
DEFAULT_Y_COLUMN = "Overall Score"
DUMMY_X_VALUE_FOR_MISSING_COSTS = 0
def _plot_scatter_plotly(
data: pd.DataFrame,
x: Optional[str],
y: str,
agent_col: str = 'Agent',
name: Optional[str] = None
) -> go.Figure:
# --- Section 1: Define Mappings ---
# These include aliases for openness categories,
# so multiple names might correspond to the same color.
color_map = {
aliases.CANONICAL_OPENNESS_OPEN_SOURCE_OPEN_WEIGHTS: "deeppink",
aliases.CANONICAL_OPENNESS_OPEN_SOURCE_CLOSED_WEIGHTS: "coral",
aliases.CANONICAL_OPENNESS_CLOSED_API_AVAILABLE: "yellow",
aliases.CANONICAL_OPENNESS_CLOSED_UI_ONLY: "white",
}
for canonical_openness, openness_aliases in aliases.OPENNESS_ALIASES.items():
for openness_alias in openness_aliases:
color_map[openness_alias] = color_map[canonical_openness]
# Only keep one name per color for the legend.
colors_for_legend = set(aliases.OPENNESS_ALIASES.keys())
category_order = list(color_map.keys())
# These include aliases for tool usage categories,
# so multiple names might correspond to the same shape.
shape_map = {
aliases.CANONICAL_TOOL_USAGE_STANDARD: "star",
aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "star-diamond",
aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "star-triangle-up",
}
for canonical_tool_usage, tool_usages_aliases in aliases.TOOL_USAGE_ALIASES.items():
for tool_usage_alias in tool_usages_aliases:
shape_map[tool_usage_alias] = shape_map[canonical_tool_usage]
default_shape = 'square'
# Only keep one name per shape for the legend.
shapes_for_legend = set(aliases.TOOL_USAGE_ALIASES.keys())
x_col_to_use = x
y_col_to_use = y
llm_base = data["Models Used"] if "Models Used" in data.columns else "Models Used"
# --- Section 2: Data Preparation---
required_cols = [y_col_to_use, agent_col, "Openness", "Agent Tooling"]
if not all(col in data.columns for col in required_cols):
logger.error(f"Missing one or more required columns for plotting: {required_cols}")
return go.Figure()
data_plot = data.copy()
data_plot[y_col_to_use] = pd.to_numeric(data_plot[y_col_to_use], errors='coerce')
x_axis_label = f"Average (mean) cost per problem (USD)" if x else "Cost (Data N/A)"
max_reported_cost = 0
divider_line_x = 0
if x and x in data_plot.columns:
data_plot[x_col_to_use] = pd.to_numeric(data_plot[x_col_to_use], errors='coerce')
# --- Separate data into two groups ---
valid_cost_data = data_plot[data_plot[x_col_to_use].notna()].copy()
missing_cost_data = data_plot[data_plot[x_col_to_use].isna()].copy()
# Hardcode for all missing costs for now, but ideally try to fallback
# to the max cost in the same figure in another split, if that one has data...
max_reported_cost = valid_cost_data[x_col_to_use].max() if not valid_cost_data.empty else 10
# ---Calculate where to place the missing data and the divider line ---
divider_line_x = max_reported_cost + (max_reported_cost/10)
new_x_for_missing = max_reported_cost + (max_reported_cost/5)
if not missing_cost_data.empty:
missing_cost_data[x_col_to_use] = new_x_for_missing
if not valid_cost_data.empty:
if not missing_cost_data.empty:
# --- Combine the two groups back together ---
data_plot = pd.concat([valid_cost_data, missing_cost_data])
else:
data_plot = valid_cost_data # No missing data, just use the valid set
else:
# ---Handle the case where ALL costs are missing ---
if not missing_cost_data.empty:
data_plot = missing_cost_data
else:
data_plot = pd.DataFrame()
else:
# Handle case where x column is not provided at all
data_plot[x_col_to_use] = 0
# Clean data based on all necessary columns
data_plot.dropna(subset=[y_col_to_use, x_col_to_use, "Openness", "Agent Tooling"], inplace=True)
# --- Section 3: Initialize Figure ---
fig = go.Figure()
if data_plot.empty:
logger.warning(f"No valid data to plot after cleaning.")
return fig
# --- Section 4: Calculate and Draw Pareto Frontier ---
if x_col_to_use and y_col_to_use:
sorted_data = data_plot.sort_values(by=[x_col_to_use, y_col_to_use], ascending=[True, False])
frontier_points = []
max_score_so_far = float('-inf')
for _, row in sorted_data.iterrows():
score = row[y_col_to_use]
if score >= max_score_so_far:
frontier_points.append({'x': row[x_col_to_use], 'y': score})
max_score_so_far = score
if frontier_points:
frontier_df = pd.DataFrame(frontier_points)
fig.add_trace(go.Scatter(
x=frontier_df['x'],
y=frontier_df['y'],
mode='lines',
name='Efficiency Frontier',
showlegend=False,
line=dict(color='#0FCB8C', width=2, dash='dash'),
hoverinfo='skip'
))
# --- Section 5: Prepare for Marker Plotting ---
def format_hover_text(row, agent_col, x_axis_label, x_col, y_col, divider_line_x):
"""
Builds the complete HTML string for the plot's hover tooltip.
Formats the 'Models Used' column as a bulleted list if multiple.
"""
h_pad = " "
parts = ["<br>"]
parts.append(f"{h_pad}<b>{row[agent_col]}</b>{h_pad}<br>")
parts.append(f"{h_pad}Score: <b>{row[y_col]:.3f}</b>{h_pad}<br>")
if divider_line_x > 0 and row[x_col] >= divider_line_x:
# If no cost, display "Missing" for the cost.
parts.append(f"{h_pad}{x_axis_label}: <b>Missing</b>{h_pad}<br>")
else:
parts.append(f"{h_pad}{x_axis_label}: <b>${row[x_col]:.2f}</b>{h_pad}<br>")
parts.append(f"{h_pad}Openness: <b>{row['Openness']}</b>{h_pad}<br>")
parts.append(f"{h_pad}Tooling: <b>{row['Agent Tooling']}</b>{h_pad}")
# Add extra vertical space (line spacing) before the next section
parts.append("<br>")
# Clean and format Models Used column
llm_base_value = row['Models Used']
llm_base_value = clean_llm_base_list(llm_base_value)
if isinstance(llm_base_value, list) and llm_base_value:
parts.append(f"{h_pad}Models Used:{h_pad}<br>")
# Create a list of padded bullet points
list_items = [f"{h_pad} • <b>{item}</b>{h_pad}" for item in llm_base_value]
# Join them with line breaks
parts.append('<br>'.join(list_items))
else:
# Handle the non-list case with padding
parts.append(f"{h_pad}Models Used: <b>{llm_base_value}</b>{h_pad}")
# Add a final line break for bottom "padding"
parts.append("<br>")
# Join all the parts together into the final HTML string
return ''.join(parts)
# Pre-generate hover text and shapes for each point
data_plot['hover_text'] = data_plot.apply(
lambda row: format_hover_text(
row,
agent_col=agent_col,
x_axis_label=x_axis_label,
x_col=x_col_to_use,
y_col=y_col_to_use,
divider_line_x=divider_line_x
),
axis=1
)
data_plot['shape_symbol'] = data_plot['Agent Tooling'].map(shape_map).fillna(default_shape)
# --- Section 6: Plot Markers by "Openness" Category ---
for category in category_order:
group = data_plot[data_plot['Openness'] == category]
if group.empty:
continue
fig.add_trace(go.Scatter(
x=group[x_col_to_use],
y=group[y_col_to_use],
mode='markers',
name=category,
showlegend=False,
text=group['hover_text'],
hoverinfo='text',
marker=dict(
color=color_map.get(category, 'black'),
symbol=group['shape_symbol'],
size=15,
opacity=0.8,
line=dict(width=1, color='deeppink')
)
))
# --- Section 8: Configure Layout ---
xaxis_config = dict(title=x_axis_label, rangemode="tozero")
if divider_line_x > 0:
fig.add_vline(
x=divider_line_x,
line_width=2,
line_dash="dash",
line_color="grey",
annotation_text="Missing Cost Data",
annotation_position="top right"
)
# ---Adjust x-axis range to make room for the new points ---
xaxis_config['range'] = [-0.2, (max_reported_cost + (max_reported_cost / 4))]
fig.update_layout(
template="plotly_white",
title=f"AstaBench {name} Leaderboard",
xaxis=xaxis_config, # Use the updated config
yaxis=dict(title="Average (mean) score", range=[-0.2, None]),
legend=dict(
bgcolor='#FAF2E9',
),
height=572,
hoverlabel=dict(
bgcolor="#105257",
font_size=12,
font_family="Manrope",
font_color="#d3dedc",
),
)
return fig
def format_cost_column(df: pd.DataFrame, cost_col_name: str) -> pd.DataFrame:
"""
Applies custom formatting to a cost column based on its corresponding score column.
- If cost is not null, it remains unchanged.
- If cost is null but score is not, it becomes "Missing Cost".
- If both cost and score are null, it becomes "Not Attempted".
Args:
df: The DataFrame to modify.
cost_col_name: The name of the cost column to format (e.g., "Overall Cost").
Returns:
The DataFrame with the formatted cost column.
"""
# Find the corresponding score column by replacing "Cost" with "Score"
score_col_name = cost_col_name.replace("Cost", "Score")
# Ensure the score column actually exists to avoid errors
if score_col_name not in df.columns:
return df # Return the DataFrame unmodified if there's no matching score
def apply_formatting_logic(row):
cost_value = row[cost_col_name]
score_value = row[score_col_name]
status_color = "#ec4899"
if pd.notna(cost_value) and isinstance(cost_value, (int, float)):
return f"${cost_value:.2f}"
elif pd.notna(score_value):
return f'<span style="color: {status_color};">Missing</span>' # Score exists, but cost is missing
else:
return f'<span style="color: {status_color};">Not Submitted</span>' # Neither score nor cost exists
# Apply the logic to the specified cost column and update the DataFrame
df[cost_col_name] = df.apply(apply_formatting_logic, axis=1)
return df
def format_score_column(df: pd.DataFrame, score_col_name: str) -> pd.DataFrame:
"""
Applies custom formatting to a score column for display.
- If a score is 0 or NaN, it's displayed as a colored "0".
- Other scores are formatted to two decimal places.
"""
status_color = "#ec4899" # The same color as your other status text
# First, fill any NaN values with 0 so we only have one case to handle.
# We must use reassignment to avoid the SettingWithCopyWarning.
df[score_col_name] = df[score_col_name].fillna(0)
def apply_formatting(score_value):
# Now, we just check if the value is 0.
if score_value == 0:
return f'<span style="color: {status_color};">0.0</span>'
# For all other numbers, format them for consistency.
if isinstance(score_value, (int, float)):
return f"{score_value:.3f}"
# Fallback for any unexpected non-numeric data
return score_value
# Apply the formatting and return the updated DataFrame
return df.assign(**{score_col_name: df[score_col_name].apply(apply_formatting)})
def get_pareto_df(data):
cost_cols = [c for c in data.columns if 'Cost' in c]
score_cols = [c for c in data.columns if 'Score' in c]
if not cost_cols or not score_cols:
return pd.DataFrame()
x_col, y_col = cost_cols[0], score_cols[0]
frontier_data = data.dropna(subset=[x_col, y_col]).copy()
frontier_data[y_col] = pd.to_numeric(frontier_data[y_col], errors='coerce')
frontier_data[x_col] = pd.to_numeric(frontier_data[x_col], errors='coerce')
frontier_data.dropna(subset=[x_col, y_col], inplace=True)
if frontier_data.empty:
return pd.DataFrame()
frontier_data = frontier_data.sort_values(by=[x_col, y_col], ascending=[True, False])
pareto_points = []
max_score_at_cost = -np.inf
for _, row in frontier_data.iterrows():
if row[y_col] >= max_score_at_cost:
pareto_points.append(row)
max_score_at_cost = row[y_col]
return pd.DataFrame(pareto_points)
def svg_to_data_uri(path: str) -> str:
"""Reads an SVG file and encodes it as a Data URI for Plotly."""
try:
with open(path, "rb") as f:
encoded_string = base64.b64encode(f.read()).decode()
return f"data:image/svg+xml;base64,{encoded_string}"
except FileNotFoundError:
logger.warning(f"SVG file not found at: {path}")
return None
def clean_llm_base_list(model_list):
"""
Cleans a list of model strings by keeping only the text after the last '/'.
For example: "models/gemini-2.5-flash-preview-05-20" becomes "gemini-2.5-flash-preview-05-20".
"""
# Return the original value if it's not a list, to avoid errors.
if not isinstance(model_list, list):
return model_list
# Use a list comprehension for a clean and efficient transformation.
return [str(item).split('/')[-1] for item in model_list]
|