Spaces:
Running
Running
Amber Tanaka
commited on
New svgs (#42)
Browse files- assets/api-custom.svg +3 -0
- assets/api-equivalent.svg +3 -0
- assets/api-standard.svg +3 -0
- assets/api.svg +0 -3
- assets/c-custom.svg +3 -0
- assets/c-equivalent.svg +3 -0
- assets/c-standard.svg +3 -0
- assets/circle-dark.svg +0 -3
- assets/circle-light.svg +0 -3
- assets/diamond-dark.svg +0 -3
- assets/diamond-light.svg +0 -3
- assets/open-source.svg +0 -3
- assets/open-weights.svg +0 -3
- assets/os-custom.svg +3 -0
- assets/os-equivalent.svg +3 -0
- assets/os-ow-custom.svg +3 -0
- assets/os-ow-equivalent.svg +3 -0
- assets/os-ow-standard.svg +3 -0
- assets/os-standard.svg +3 -0
- assets/star-dark.svg +0 -3
- assets/star-light.svg +0 -3
- assets/ui.svg +0 -3
- content.py +0 -23
- leaderboard_transformer.py +9 -11
- ui_components.py +88 -80
assets/api-custom.svg
ADDED
|
assets/api-equivalent.svg
ADDED
|
assets/api-standard.svg
ADDED
|
assets/api.svg
DELETED
assets/c-custom.svg
ADDED
|
assets/c-equivalent.svg
ADDED
|
assets/c-standard.svg
ADDED
|
assets/circle-dark.svg
DELETED
assets/circle-light.svg
DELETED
assets/diamond-dark.svg
DELETED
assets/diamond-light.svg
DELETED
assets/open-source.svg
DELETED
assets/open-weights.svg
DELETED
assets/os-custom.svg
ADDED
|
assets/os-equivalent.svg
ADDED
|
assets/os-ow-custom.svg
ADDED
|
assets/os-ow-equivalent.svg
ADDED
|
assets/os-ow-standard.svg
ADDED
|
assets/os-standard.svg
ADDED
|
assets/star-dark.svg
DELETED
assets/star-light.svg
DELETED
assets/ui.svg
DELETED
content.py
CHANGED
@@ -245,34 +245,11 @@ nav.svelte-ti537g.svelte-ti537g {
|
|
245 |
height: 16px;
|
246 |
vertical-align: middle;
|
247 |
}
|
248 |
-
|
249 |
-
/* By default, hide BOTH theme-aware icons inside a DataFrame cell */
|
250 |
-
.wrap-header-df .cell-wrap .light-mode-icon,
|
251 |
-
.wrap-header-df .cell-wrap .dark-mode-icon {
|
252 |
-
display: none !important;
|
253 |
-
}
|
254 |
-
|
255 |
-
/* Light Theme Rule: Show the light-mode icon */
|
256 |
-
html:not(.dark) .wrap-header-df .cell-wrap .light-mode-icon {
|
257 |
-
display: inline-block !important;
|
258 |
-
}
|
259 |
-
|
260 |
-
/* Dark Theme Rule: Show the dark-mode icon */
|
261 |
-
.dark .wrap-header-df .cell-wrap .dark-mode-icon {
|
262 |
-
display: inline-block !important;
|
263 |
-
}
|
264 |
#legend-markdown img {
|
265 |
width: 16px;
|
266 |
height: 16px;
|
267 |
vertical-align: middle;
|
268 |
}
|
269 |
-
html:not(.dark) #legend-markdown .light-mode-icon,
|
270 |
-
.dark #legend-markdown .dark-mode-icon {
|
271 |
-
display: inline-block;
|
272 |
-
}
|
273 |
-
#legend-markdown .light-mode-icon, #legend-markdown .dark-mode-icon {
|
274 |
-
display: none;
|
275 |
-
}
|
276 |
/*------ Global tooltip styles ------*/
|
277 |
.tooltip-icon {
|
278 |
display: inline-block;
|
|
|
245 |
height: 16px;
|
246 |
vertical-align: middle;
|
247 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
#legend-markdown img {
|
249 |
width: 16px;
|
250 |
height: 16px;
|
251 |
vertical-align: middle;
|
252 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
/*------ Global tooltip styles ------*/
|
254 |
.tooltip-icon {
|
255 |
display: inline-block;
|
leaderboard_transformer.py
CHANGED
@@ -336,16 +336,16 @@ def _plot_scatter_plotly(
|
|
336 |
|
337 |
# --- Section 1: Define Mappings ---
|
338 |
color_map = {
|
339 |
-
"
|
340 |
-
"
|
341 |
-
"
|
342 |
-
"
|
343 |
}
|
344 |
category_order = list(color_map.keys())
|
345 |
shape_map = {
|
346 |
"Standard": "star",
|
347 |
-
"Custom with Standard Search": "diamond",
|
348 |
-
"Fully Custom": "
|
349 |
}
|
350 |
default_shape = 'square'
|
351 |
|
@@ -424,7 +424,7 @@ def _plot_scatter_plotly(
|
|
424 |
y=frontier_df['y'],
|
425 |
mode='lines',
|
426 |
name='Efficiency Frontier',
|
427 |
-
line=dict(color='
|
428 |
hoverinfo='skip'
|
429 |
))
|
430 |
|
@@ -492,7 +492,7 @@ def _plot_scatter_plotly(
|
|
492 |
symbol=group['shape_symbol'],
|
493 |
size=10,
|
494 |
opacity=0.8,
|
495 |
-
line=dict(width=1, color='
|
496 |
)
|
497 |
))
|
498 |
# ---- Add logic for making the legend -----------
|
@@ -522,7 +522,7 @@ def _plot_scatter_plotly(
|
|
522 |
marker=dict(color='black', symbol=shape_symbol, size=12)
|
523 |
))
|
524 |
|
525 |
-
# --- Section 8: Configure Layout
|
526 |
xaxis_config = dict(title=x_axis_label, rangemode="tozero")
|
527 |
if divider_line_x > 0:
|
528 |
fig.add_vline(
|
@@ -634,8 +634,6 @@ def format_score_column(df: pd.DataFrame, score_col_name: str) -> pd.DataFrame:
|
|
634 |
|
635 |
|
636 |
def get_pareto_df(data):
|
637 |
-
# This is a placeholder; use your actual function that handles dynamic column names
|
638 |
-
# A robust version might look for any column with "Cost" and "Score"
|
639 |
cost_cols = [c for c in data.columns if 'Cost' in c]
|
640 |
score_cols = [c for c in data.columns if 'Score' in c]
|
641 |
if not cost_cols or not score_cols:
|
|
|
336 |
|
337 |
# --- Section 1: Define Mappings ---
|
338 |
color_map = {
|
339 |
+
"Open Source + Open Weights": "deeppink",
|
340 |
+
"Open Source": "coral",
|
341 |
+
"API Available": "yellow",
|
342 |
+
"Closed": "white",
|
343 |
}
|
344 |
category_order = list(color_map.keys())
|
345 |
shape_map = {
|
346 |
"Standard": "star",
|
347 |
+
"Custom with Standard Search": "star-diamond",
|
348 |
+
"Fully Custom": "star-triangle-up"
|
349 |
}
|
350 |
default_shape = 'square'
|
351 |
|
|
|
424 |
y=frontier_df['y'],
|
425 |
mode='lines',
|
426 |
name='Efficiency Frontier',
|
427 |
+
line=dict(color='#0FCB8C', width=2, dash='dash'),
|
428 |
hoverinfo='skip'
|
429 |
))
|
430 |
|
|
|
492 |
symbol=group['shape_symbol'],
|
493 |
size=10,
|
494 |
opacity=0.8,
|
495 |
+
line=dict(width=1, color='deeppink')
|
496 |
)
|
497 |
))
|
498 |
# ---- Add logic for making the legend -----------
|
|
|
522 |
marker=dict(color='black', symbol=shape_symbol, size=12)
|
523 |
))
|
524 |
|
525 |
+
# --- Section 8: Configure Layout ---
|
526 |
xaxis_config = dict(title=x_axis_label, rangemode="tozero")
|
527 |
if divider_line_x > 0:
|
528 |
fig.add_vline(
|
|
|
634 |
|
635 |
|
636 |
def get_pareto_df(data):
|
|
|
|
|
637 |
cost_cols = [c for c in data.columns if 'Cost' in c]
|
638 |
score_cols = [c for c in data.columns if 'Score' in c]
|
639 |
if not cost_cols or not score_cols:
|
ui_components.py
CHANGED
@@ -51,73 +51,90 @@ api = HfApi()
|
|
51 |
MAX_UPLOAD_BYTES = 100 * 1024**2
|
52 |
AGENTEVAL_MANIFEST_NAME = "agenteval.json"
|
53 |
os.makedirs(EXTRACTED_DATA_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
def
|
59 |
"""
|
60 |
-
|
61 |
-
|
62 |
"""
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
with open(file_path, "rb") as svg_file:
|
70 |
-
encoded_string = base64.b64encode(svg_file.read()).decode('utf-8')
|
71 |
-
data_uri = f"data:image/svg+xml;base64,{encoded_string}"
|
72 |
-
|
73 |
-
# Store in cache for future use
|
74 |
-
SVG_DATA_URI_CACHE[file_path] = data_uri
|
75 |
-
return data_uri
|
76 |
-
except FileNotFoundError:
|
77 |
-
# If the file doesn't exist, print a warning and return an empty string
|
78 |
-
print(f"Warning: SVG file not found at '{file_path}'")
|
79 |
-
return ""
|
80 |
|
81 |
def create_svg_html(value, svg_map):
|
82 |
"""
|
83 |
Generates the absolute simplest HTML for an icon, without any extra text.
|
84 |
This version is compatible with gr.DataFrame.
|
85 |
"""
|
86 |
-
# If the value isn't in our map, return an empty string so the cell is blank.
|
87 |
if pd.isna(value) or value not in svg_map:
|
88 |
return ""
|
89 |
|
90 |
path_info = svg_map[value]
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
dark_theme_icon_uri = get_svg_as_data_uri(path_info['light'])
|
96 |
-
|
97 |
-
# Generate the HTML for the two icons side-by-side, with NO text.
|
98 |
-
img1 = f'<img src="{light_theme_icon_uri}" class="light-mode-icon" alt="{value}" title="{value}">'
|
99 |
-
img2 = f'<img src="{dark_theme_icon_uri}" class="dark-mode-icon" alt="{value}" title="{value}">'
|
100 |
-
return f'{img1}{img2}'
|
101 |
-
|
102 |
-
# For single icons that don't change with theme (like Openness)
|
103 |
-
elif isinstance(path_info, str):
|
104 |
-
src = get_svg_as_data_uri(path_info)
|
105 |
-
# Generate the HTML for the single icon, with NO text.
|
106 |
return f'<img src="{src}" style="width: 16px; height: 16px; vertical-align: middle;" alt="{value}" title="{value}">'
|
107 |
-
|
108 |
-
# Fallback in case of an unexpected data type
|
109 |
return ""
|
110 |
|
111 |
-
# Global variables
|
112 |
-
OPENNESS_SVG_MAP = {
|
113 |
-
"Open Source + Open Weights": "assets/open-weights.svg", "Open Source": "assets/open-source.svg", "API Available": "assets/api.svg", "Closed": "assets/ui.svg"
|
114 |
-
}
|
115 |
-
TOOLING_SVG_MAP = {
|
116 |
-
"Standard": {"light": "assets/star-light.svg", "dark": "assets/star-dark.svg"},
|
117 |
-
"Custom with Standard Search": {"light": "assets/diamond-light.svg", "dark": "assets/diamond-dark.svg"},
|
118 |
-
"Fully Custom": {"light": "assets/circle-light.svg", "dark": "assets/circle-dark.svg"},
|
119 |
-
}
|
120 |
-
|
121 |
# Dynamically generate the correct HTML for the legend parts
|
122 |
openness_html = " ".join([create_svg_html(name, OPENNESS_SVG_MAP) for name in OPENNESS_SVG_MAP])
|
123 |
tooling_html = " ".join([create_svg_html(name, TOOLING_SVG_MAP) for name in TOOLING_SVG_MAP])
|
@@ -136,22 +153,12 @@ openness_html = " ".join(openness_html_items)
|
|
136 |
|
137 |
# Create HTML for the "Tooling" legend items
|
138 |
tooling_html_items = []
|
139 |
-
for name,
|
140 |
-
|
141 |
-
dark_theme_icon_uri = get_svg_as_data_uri(paths['light'])
|
142 |
-
|
143 |
-
# The two swapping icons need to be stacked with absolute positioning
|
144 |
-
img1 = f'<img src="{light_theme_icon_uri}" class="light-mode-icon" alt="{name}" title="{name}" style="position: absolute; top: 0; left: 0;">'
|
145 |
-
img2 = f'<img src="{dark_theme_icon_uri}" class="dark-mode-icon" alt="{name}" title="{name}" style="position: absolute; top: 0; left: 0;">'
|
146 |
-
|
147 |
-
# Their container needs a defined size and relative positioning
|
148 |
-
icon_container = f'<div style="width: 16px; height: 16px; position: relative; flex-shrink: 0;">{img1}{img2}</div>'
|
149 |
-
|
150 |
-
# This item is also a flexbox container
|
151 |
tooling_html_items.append(
|
152 |
f'<div style="display: flex; align-items: center; white-space: nowrap;">'
|
153 |
-
f'{
|
154 |
-
f'<span
|
155 |
f'</div>'
|
156 |
)
|
157 |
tooling_html = " ".join(tooling_html_items)
|
@@ -202,7 +209,7 @@ legend_markdown = f"""
|
|
202 |
CACHED_VIEWERS = {}
|
203 |
CACHED_TAG_MAPS = {}
|
204 |
|
205 |
-
|
206 |
class DummyViewer:
|
207 |
"""A mock viewer to be cached on error. It has a ._load() method
|
208 |
to ensure it behaves like the real LeaderboardViewer."""
|
@@ -284,9 +291,10 @@ def create_leaderboard_display(
|
|
284 |
axis=1
|
285 |
)
|
286 |
# Create mapping for Openness / tooling
|
287 |
-
df_view['
|
288 |
-
|
289 |
-
|
|
|
290 |
|
291 |
# Format cost columns
|
292 |
for col in df_view.columns:
|
@@ -303,11 +311,12 @@ def create_leaderboard_display(
|
|
303 |
df_view['LLM Base'] = df_view['LLM Base'].apply(format_llm_base_with_html)
|
304 |
|
305 |
all_cols = df_view.columns.tolist()
|
306 |
-
# Remove
|
|
|
307 |
all_cols.insert(0, all_cols.pop(all_cols.index('Pareto')))
|
308 |
df_view = df_view[all_cols]
|
309 |
# Drop internally used columns that are not needed in the display
|
310 |
-
columns_to_drop = ['id', 'agent_for_hover']
|
311 |
df_view = df_view.drop(columns=columns_to_drop, errors='ignore')
|
312 |
|
313 |
df_headers = df_view.columns.tolist()
|
@@ -315,15 +324,14 @@ def create_leaderboard_display(
|
|
315 |
for col in df_headers:
|
316 |
if col in ["Logs", "Agent"] or "Cost" in col or "Score" in col:
|
317 |
df_datatypes.append("markdown")
|
318 |
-
elif col in ["
|
319 |
df_datatypes.append("html")
|
320 |
else:
|
321 |
df_datatypes.append("str")
|
322 |
|
323 |
header_rename_map = {
|
324 |
"Pareto": "",
|
325 |
-
"
|
326 |
-
"Agent Tooling": ""
|
327 |
}
|
328 |
# 2. Create the final list of headers for display.
|
329 |
df_view = df_view.rename(columns=header_rename_map)
|
@@ -342,7 +350,7 @@ def create_leaderboard_display(
|
|
342 |
datatype=df_datatypes,
|
343 |
interactive=False,
|
344 |
wrap=True,
|
345 |
-
column_widths=[
|
346 |
elem_classes=["wrap-header-df"]
|
347 |
)
|
348 |
|
@@ -413,8 +421,10 @@ def create_benchmark_details_display(
|
|
413 |
axis=1
|
414 |
)
|
415 |
|
416 |
-
benchmark_table_df['
|
417 |
-
|
|
|
|
|
418 |
|
419 |
#Make pretty and format the LLM Base column
|
420 |
benchmark_table_df['LLM Base'] = benchmark_table_df['LLM Base'].apply(clean_llm_base_list)
|
@@ -442,8 +452,7 @@ def create_benchmark_details_display(
|
|
442 |
benchmark_table_df = format_score_column(benchmark_table_df, benchmark_score_col)
|
443 |
desired_cols_in_order = [
|
444 |
'Pareto',
|
445 |
-
'
|
446 |
-
'Agent Tooling',
|
447 |
'Agent',
|
448 |
'Submitter',
|
449 |
'LLM Base',
|
@@ -467,15 +476,14 @@ def create_benchmark_details_display(
|
|
467 |
for col in df_headers:
|
468 |
if "Logs" in col or "Cost" in col or "Score" in col:
|
469 |
df_datatypes.append("markdown")
|
470 |
-
elif col in ["
|
471 |
df_datatypes.append("html")
|
472 |
else:
|
473 |
df_datatypes.append("str")
|
474 |
# Remove Pareto, Openness, and Agent Tooling from the headers
|
475 |
header_rename_map = {
|
476 |
"Pareto": "",
|
477 |
-
"
|
478 |
-
"Agent Tooling": ""
|
479 |
}
|
480 |
# 2. Create the final list of headers for display.
|
481 |
benchmark_table_df = benchmark_table_df.rename(columns=header_rename_map)
|
@@ -498,7 +506,7 @@ def create_benchmark_details_display(
|
|
498 |
datatype=df_datatypes,
|
499 |
interactive=False,
|
500 |
wrap=True,
|
501 |
-
column_widths=[40, 40,
|
502 |
elem_classes=["wrap-header-df"]
|
503 |
)
|
504 |
|
|
|
51 |
MAX_UPLOAD_BYTES = 100 * 1024**2
|
52 |
AGENTEVAL_MANIFEST_NAME = "agenteval.json"
|
53 |
os.makedirs(EXTRACTED_DATA_DIR, exist_ok=True)
|
54 |
+
# Global variables
|
55 |
+
COMBINED_ICON_MAP = {
|
56 |
+
"Open Source + Open Weights": {
|
57 |
+
"Standard": "assets/os-ow-standard.svg", # Bright pink star
|
58 |
+
"Custom with Standard Search": "assets/os-ow-equivalent.svg", # Bright pink diamond
|
59 |
+
"Custom": "assets/os-ow-custom.svg", # Bright pink triangle
|
60 |
+
},
|
61 |
+
"Open Source": {
|
62 |
+
"Standard": "assets/os-standard.svg", # Orange/pink star
|
63 |
+
"Custom with Standard Search": "assets/os-equivalent.svg", # Orange/pink diamond
|
64 |
+
"Fully Custom": "assets/os-custom.svg", # Orange/pink triangle
|
65 |
+
},
|
66 |
+
"API Available": {
|
67 |
+
"Standard": "assets/api-standard.svg", # Yellow/pink star
|
68 |
+
"Custom with Standard Search": "assets/api-equivalent.svg", # Yellow/pink diamond
|
69 |
+
"Fully Custom": "assets/api-custom.svg", # Yellow/pink triangle
|
70 |
+
},
|
71 |
+
"Closed": {
|
72 |
+
"Standard": "assets/c-standard.svg", # Hollow pink star
|
73 |
+
"Equivalent": "assets/c-equivalent.svg", # Hollow pink diamond
|
74 |
+
"Fully Custom": "assets/c-custom.svg", # Hollow pink triangle
|
75 |
+
}
|
76 |
+
}
|
77 |
+
OPENNESS_SVG_MAP = {
|
78 |
+
"Open Source + Open Weights": "assets/os-ow-standard.svg",
|
79 |
+
"Open Source": "assets/os-standard.svg",
|
80 |
+
"API Available": "assets/api-standard.svg",
|
81 |
+
"Closed": "assets/c-standard.svg",
|
82 |
+
}
|
83 |
+
TOOLING_SVG_MAP = {
|
84 |
+
"Standard": "assets/os-ow-standard.svg",
|
85 |
+
"Custom with Standard Search": "assets/os-ow-equivalent.svg",
|
86 |
+
"Fully Custom": "assets/os-ow-custom.svg",
|
87 |
+
}
|
88 |
+
|
89 |
+
def get_svg_as_data_uri(path: str) -> str:
|
90 |
+
"""Reads an SVG file and returns it as a base64-encoded data URI."""
|
91 |
+
try:
|
92 |
+
with open(path, "rb") as svg_file:
|
93 |
+
encoded_svg = base64.b64encode(svg_file.read()).decode("utf-8")
|
94 |
+
return f"data:image/svg+xml;base64,{encoded_svg}"
|
95 |
+
except FileNotFoundError:
|
96 |
+
print(f"Warning: SVG file not found at {path}")
|
97 |
+
return ""
|
98 |
|
99 |
+
# Create a pre-loaded version of our map. This should be run ONCE when the app starts.
|
100 |
+
PRELOADED_URI_MAP = {
|
101 |
+
openness: {
|
102 |
+
tooling: get_svg_as_data_uri(path)
|
103 |
+
for tooling, path in tooling_map.items()
|
104 |
+
}
|
105 |
+
for openness, tooling_map in COMBINED_ICON_MAP.items()
|
106 |
+
}
|
107 |
|
108 |
+
def get_combined_icon_html(row, uri_map):
|
109 |
"""
|
110 |
+
Looks up the correct icon URI from the pre-loaded map based on the row's
|
111 |
+
'Openness' and 'Agent Tooling' values and returns an HTML <img> tag.
|
112 |
"""
|
113 |
+
openness_val = row['Openness']
|
114 |
+
tooling_val = row['Agent Tooling']
|
115 |
+
uri = uri_map.get(openness_val, {}).get(tooling_val, "")
|
116 |
+
# The tooltip will show the exact combination for clarity.
|
117 |
+
tooltip = f"Openness: {openness_val}, Tooling: {tooling_val}"
|
118 |
|
119 |
+
# Return the HTML string that Gradio will render in the DataFrame.
|
120 |
+
return f'<img src="{uri}" alt="{tooltip}" title="{tooltip}" style="width:24px; height:24px;">'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
def create_svg_html(value, svg_map):
|
123 |
"""
|
124 |
Generates the absolute simplest HTML for an icon, without any extra text.
|
125 |
This version is compatible with gr.DataFrame.
|
126 |
"""
|
|
|
127 |
if pd.isna(value) or value not in svg_map:
|
128 |
return ""
|
129 |
|
130 |
path_info = svg_map[value]
|
131 |
|
132 |
+
src = get_svg_as_data_uri(path_info)
|
133 |
+
# Generate the HTML for the single icon, with NO text.
|
134 |
+
if src:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
return f'<img src="{src}" style="width: 16px; height: 16px; vertical-align: middle;" alt="{value}" title="{value}">'
|
|
|
|
|
136 |
return ""
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
# Dynamically generate the correct HTML for the legend parts
|
139 |
openness_html = " ".join([create_svg_html(name, OPENNESS_SVG_MAP) for name in OPENNESS_SVG_MAP])
|
140 |
tooling_html = " ".join([create_svg_html(name, TOOLING_SVG_MAP) for name in TOOLING_SVG_MAP])
|
|
|
153 |
|
154 |
# Create HTML for the "Tooling" legend items
|
155 |
tooling_html_items = []
|
156 |
+
for name, path in TOOLING_SVG_MAP.items():
|
157 |
+
uri = get_svg_as_data_uri(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
tooling_html_items.append(
|
159 |
f'<div style="display: flex; align-items: center; white-space: nowrap;">'
|
160 |
+
f'<img src="{uri}" alt="{name}" title="{name}" style="width:16px; height:16px; margin-right: 4px; flex-shrink: 0;">'
|
161 |
+
f'<span>{name}</span>'
|
162 |
f'</div>'
|
163 |
)
|
164 |
tooling_html = " ".join(tooling_html_items)
|
|
|
209 |
CACHED_VIEWERS = {}
|
210 |
CACHED_TAG_MAPS = {}
|
211 |
|
212 |
+
|
213 |
class DummyViewer:
|
214 |
"""A mock viewer to be cached on error. It has a ._load() method
|
215 |
to ensure it behaves like the real LeaderboardViewer."""
|
|
|
291 |
axis=1
|
292 |
)
|
293 |
# Create mapping for Openness / tooling
|
294 |
+
df_view['Icon'] = df_view.apply(
|
295 |
+
lambda row: get_combined_icon_html(row, PRELOADED_URI_MAP),
|
296 |
+
axis=1 # IMPORTANT: axis=1 tells pandas to process row-by-row
|
297 |
+
)
|
298 |
|
299 |
# Format cost columns
|
300 |
for col in df_view.columns:
|
|
|
311 |
df_view['LLM Base'] = df_view['LLM Base'].apply(format_llm_base_with_html)
|
312 |
|
313 |
all_cols = df_view.columns.tolist()
|
314 |
+
# Remove pareto and Icon columns and insert it at the beginning
|
315 |
+
all_cols.insert(0, all_cols.pop(all_cols.index('Icon')))
|
316 |
all_cols.insert(0, all_cols.pop(all_cols.index('Pareto')))
|
317 |
df_view = df_view[all_cols]
|
318 |
# Drop internally used columns that are not needed in the display
|
319 |
+
columns_to_drop = ['id', 'agent_for_hover', 'Openness', 'Agent Tooling']
|
320 |
df_view = df_view.drop(columns=columns_to_drop, errors='ignore')
|
321 |
|
322 |
df_headers = df_view.columns.tolist()
|
|
|
324 |
for col in df_headers:
|
325 |
if col in ["Logs", "Agent"] or "Cost" in col or "Score" in col:
|
326 |
df_datatypes.append("markdown")
|
327 |
+
elif col in ["Icon","LLM Base"]:
|
328 |
df_datatypes.append("html")
|
329 |
else:
|
330 |
df_datatypes.append("str")
|
331 |
|
332 |
header_rename_map = {
|
333 |
"Pareto": "",
|
334 |
+
"Icon": "",
|
|
|
335 |
}
|
336 |
# 2. Create the final list of headers for display.
|
337 |
df_view = df_view.rename(columns=header_rename_map)
|
|
|
350 |
datatype=df_datatypes,
|
351 |
interactive=False,
|
352 |
wrap=True,
|
353 |
+
column_widths=[40, 40, 200, 200],
|
354 |
elem_classes=["wrap-header-df"]
|
355 |
)
|
356 |
|
|
|
421 |
axis=1
|
422 |
)
|
423 |
|
424 |
+
benchmark_table_df['Icon'] = benchmark_table_df.apply(
|
425 |
+
lambda row: get_combined_icon_html(row, PRELOADED_URI_MAP),
|
426 |
+
axis=1 # IMPORTANT: axis=1 tells pandas to process row-by-row
|
427 |
+
)
|
428 |
|
429 |
#Make pretty and format the LLM Base column
|
430 |
benchmark_table_df['LLM Base'] = benchmark_table_df['LLM Base'].apply(clean_llm_base_list)
|
|
|
452 |
benchmark_table_df = format_score_column(benchmark_table_df, benchmark_score_col)
|
453 |
desired_cols_in_order = [
|
454 |
'Pareto',
|
455 |
+
'Icon',
|
|
|
456 |
'Agent',
|
457 |
'Submitter',
|
458 |
'LLM Base',
|
|
|
476 |
for col in df_headers:
|
477 |
if "Logs" in col or "Cost" in col or "Score" in col:
|
478 |
df_datatypes.append("markdown")
|
479 |
+
elif col in ["Icon", "LLM Base"]:
|
480 |
df_datatypes.append("html")
|
481 |
else:
|
482 |
df_datatypes.append("str")
|
483 |
# Remove Pareto, Openness, and Agent Tooling from the headers
|
484 |
header_rename_map = {
|
485 |
"Pareto": "",
|
486 |
+
"Icon": "",
|
|
|
487 |
}
|
488 |
# 2. Create the final list of headers for display.
|
489 |
benchmark_table_df = benchmark_table_df.rename(columns=header_rename_map)
|
|
|
506 |
datatype=df_datatypes,
|
507 |
interactive=False,
|
508 |
wrap=True,
|
509 |
+
column_widths=[40, 40, 200, 150, 175, 85],
|
510 |
elem_classes=["wrap-header-df"]
|
511 |
)
|
512 |
|