Spaces:
Sleeping
Sleeping
File size: 25,162 Bytes
7e17387 74d9c0e 7e17387 450e44d 7e17387 74d9c0e 7e17387 dd97346 74d9c0e 7e17387 9d69ed1 4e456a7 e0be832 4e456a7 9d69ed1 74d9c0e 4e456a7 450e44d 4e456a7 450e44d 4e456a7 dd97346 4e456a7 450e44d 4e456a7 dd97346 4e456a7 450e44d 4e456a7 450e44d dd97346 4e456a7 450e44d 4e456a7 450e44d 4e456a7 450e44d 4e456a7 450e44d e0be832 dd97346 e0be832 450e44d e0be832 450e44d e0be832 450e44d e0be832 450e44d e0be832 450e44d 4e456a7 e0be832 f647840 ee9fc3c 74d9c0e 450e44d e0be832 4e456a7 450e44d e0be832 dd97346 4e456a7 e0be832 4e456a7 dd97346 450e44d 4e456a7 450e44d e0be832 450e44d 4e456a7 450e44d dd97346 e0be832 dd97346 e0be832 dd97346 f647840 9d69ed1 450e44d 4e456a7 450e44d e0be832 4e456a7 450e44d 4e456a7 dd97346 450e44d e0be832 dd97346 4e456a7 450e44d e0be832 450e44d 4e456a7 dd97346 f647840 9d69ed1 4e456a7 450e44d 4e456a7 450e44d 4e456a7 450e44d dd97346 450e44d dd97346 450e44d 4e456a7 dd97346 450e44d e0be832 4e456a7 dd97346 450e44d dd97346 450e44d dd97346 450e44d dd97346 450e44d dd97346 450e44d e0be832 450e44d dd97346 450e44d e0be832 450e44d dd97346 4e456a7 450e44d 4e456a7 450e44d e0be832 450e44d dd97346 450e44d dd97346 450e44d dd97346 450e44d dd97346 450e44d dd97346 e0be832 450e44d 4e456a7 450e44d e0be832 450e44d e0be832 dd97346 450e44d e0be832 450e44d e0be832 8e2e740 450e44d e0be832 4e456a7 450e44d e0be832 450e44d e0be832 dd97346 450e44d dd97346 450e44d 4e456a7 dd97346 450e44d dd97346 450e44d dd97346 4e456a7 450e44d 9d69ed1 8e2e740 dd97346 e0be832 dd97346 450e44d dd97346 450e44d dd97346 4e456a7 dd97346 450e44d 4e456a7 dd97346 4e456a7 dd97346 4e456a7 dd97346 450e44d 4e456a7 dd97346 e0be832 4e456a7 dd97346 450e44d dd97346 450e44d dd97346 450e44d 4e456a7 dd97346 450e44d dd97346 450e44d dd97346 450e44d 4e456a7 450e44d dd97346 450e44d 4e456a7 450e44d dd97346 450e44d dd97346 450e44d dd97346 450e44d 4e456a7 dd97346 450e44d dd97346 450e44d dd97346 450e44d dd97346 4e456a7 450e44d e0be832 450e44d dd97346 450e44d 4e456a7 7e17387 74d9c0e 4e456a7 450e44d 4e456a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import gradio as gr
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min, r2_score
import matplotlib.pyplot as plt
import matplotlib.cm
import io
import os # Added for path joining
from PIL import Image
# Define the paths for example data
EXAMPLE_DATA_DIR = "eg_data"
EXAMPLE_FILES = {
"cashflow_base": os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K.xlsx"),
"cashflow_lapse": os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K_lapse50.xlsx"),
"cashflow_mort": os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K_mort15.xlsx"),
"policy_data": os.path.join(EXAMPLE_DATA_DIR, "model_point_table.xlsx"),
"pv_base": os.path.join(EXAMPLE_DATA_DIR, "pv_seriatim_10K.xlsx"),
"pv_lapse": os.path.join(EXAMPLE_DATA_DIR, "pv_seriatim_10K_lapse50.xlsx"),
"pv_mort": os.path.join(EXAMPLE_DATA_DIR, "pv_seriatim_10K_mort15.xlsx"),
}
class Clusters:
def __init__(self, loc_vars):
self.kmeans = kmeans = KMeans(n_clusters=1000, random_state=0, n_init=10).fit(np.ascontiguousarray(loc_vars))
closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, np.ascontiguousarray(loc_vars))
rep_ids = pd.Series(data=(closest+1)) # 0-based to 1-based indexes
rep_ids.name = 'policy_id'
rep_ids.index.name = 'cluster_id'
self.rep_ids = rep_ids
self.policy_count = self.agg_by_cluster(pd.DataFrame({'policy_count': [1] * len(loc_vars)}))['policy_count']
def agg_by_cluster(self, df, agg=None):
"""Aggregate columns by cluster"""
temp = df.copy()
temp['cluster_id'] = self.kmeans.labels_
temp = temp.set_index('cluster_id')
agg = {c: (agg[c] if agg and c in agg else 'sum') for c in temp.columns} if agg else "sum"
return temp.groupby(temp.index).agg(agg)
def extract_reps(self, df):
"""Extract the rows of representative policies"""
temp = pd.merge(self.rep_ids, df.reset_index(), how='left', on='policy_id')
temp.index.name = 'cluster_id'
return temp.drop('policy_id', axis=1)
def extract_and_scale_reps(self, df, agg=None):
"""Extract and scale the rows of representative policies"""
if agg:
cols = df.columns
mult = pd.DataFrame({c: (self.policy_count if (c not in agg or agg[c] == 'sum') else 1) for c in cols})
# Ensure mult has same index as extract_reps(df) for proper alignment
extracted_df = self.extract_reps(df)
mult.index = extracted_df.index
return extracted_df.mul(mult)
else:
return self.extract_reps(df).mul(self.policy_count, axis=0)
def compare(self, df, agg=None):
"""Returns a multi-indexed Dataframe comparing actual and estimate"""
source = self.agg_by_cluster(df, agg)
target = self.extract_and_scale_reps(df, agg)
return pd.DataFrame({'actual': source.stack(), 'estimate':target.stack()})
def compare_total(self, df, agg=None):
"""Aggregate df by columns"""
if agg:
# Calculate actual values using specified aggregation
actual_values = {}
for col in df.columns:
if agg.get(col, 'sum') == 'mean':
actual_values[col] = df[col].mean()
else: # sum
actual_values[col] = df[col].sum()
actual = pd.Series(actual_values)
# Calculate estimate values
reps_unscaled = self.extract_reps(df)
estimate_values = {}
for col in df.columns:
if agg.get(col, 'sum') == 'mean':
# Weighted average for mean columns
weighted_sum = (reps_unscaled[col] * self.policy_count).sum()
total_weight = self.policy_count.sum()
estimate_values[col] = weighted_sum / total_weight if total_weight > 0 else 0
else: # sum
estimate_values[col] = (reps_unscaled[col] * self.policy_count).sum()
estimate = pd.Series(estimate_values)
else: # Original logic if no agg is specified (all sum)
actual = df.sum()
estimate = self.extract_and_scale_reps(df).sum()
# Calculate error, handling division by zero
error = np.where(actual != 0, estimate / actual - 1, 0)
return pd.DataFrame({'actual': actual, 'estimate': estimate, 'error': error})
def plot_cashflows_comparison(cfs_list, cluster_obj, titles):
"""Create cashflow comparison plots"""
if not cfs_list or not cluster_obj or not titles:
return None
num_plots = len(cfs_list)
if num_plots == 0:
return None
# Determine subplot layout
cols = 2
rows = (num_plots + cols - 1) // cols
fig, axes = plt.subplots(rows, cols, figsize=(15, 5 * rows), squeeze=False)
axes = axes.flatten()
for i, (df, title) in enumerate(zip(cfs_list, titles)):
if i < len(axes):
comparison = cluster_obj.compare_total(df)
comparison[['actual', 'estimate']].plot(ax=axes[i], grid=True, title=title)
axes[i].set_xlabel('Time')
axes[i].set_ylabel('Value')
# Hide any unused subplots
for j in range(i + 1, len(axes)):
fig.delaxes(axes[j])
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def plot_scatter_comparison(df_compare_output, title):
"""Create scatter plot comparison from compare() output"""
if df_compare_output is None or df_compare_output.empty:
# Create a blank plot with a message
fig, ax = plt.subplots(figsize=(12, 8))
ax.text(0.5, 0.5, "No data to display", ha='center', va='center', fontsize=15)
ax.set_title(title)
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
fig, ax = plt.subplots(figsize=(12, 8))
if not isinstance(df_compare_output.index, pd.MultiIndex) or df_compare_output.index.nlevels < 2:
gr.Warning("Scatter plot data is not in the expected multi-index format. Plotting raw actual vs estimate.")
ax.scatter(df_compare_output['actual'], df_compare_output['estimate'], s=9, alpha=0.6)
else:
unique_levels = df_compare_output.index.get_level_values(1).unique()
colors = matplotlib.cm.rainbow(np.linspace(0, 1, len(unique_levels)))
for item_level, color_val in zip(unique_levels, colors):
subset = df_compare_output.xs(item_level, level=1)
ax.scatter(subset['actual'], subset['estimate'], color=color_val, s=9, alpha=0.6, label=item_level)
if len(unique_levels) > 1 and len(unique_levels) <= 10:
ax.legend(title=df_compare_output.index.names[1])
ax.set_xlabel('Actual')
ax.set_ylabel('Estimate')
ax.set_title(title)
ax.grid(True)
# Draw identity line
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]),
np.max([ax.get_xlim(), ax.get_ylim()]),
]
if lims[0] != lims[1]:
ax.plot(lims, lims, 'r-', linewidth=0.5)
ax.set_xlim(lims)
ax.set_ylim(lims)
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def process_files(cashflow_base_path, cashflow_lapse_path, cashflow_mort_path,
policy_data_path, pv_base_path, pv_lapse_path, pv_mort_path):
"""Main processing function - now accepts file paths"""
try:
# Read uploaded files using paths
cfs = pd.read_excel(cashflow_base_path, index_col=0)
cfs_lapse50 = pd.read_excel(cashflow_lapse_path, index_col=0)
cfs_mort15 = pd.read_excel(cashflow_mort_path, index_col=0)
pol_data_full = pd.read_excel(policy_data_path, index_col=0)
# Ensure the correct columns are selected for pol_data
required_cols = ['age_at_entry', 'policy_term', 'sum_assured', 'duration_mth']
if all(col in pol_data_full.columns for col in required_cols):
pol_data = pol_data_full[required_cols]
else:
gr.Warning(f"Policy data might be missing required columns. Found: {pol_data_full.columns.tolist()}")
pol_data = pol_data_full
pvs = pd.read_excel(pv_base_path, index_col=0)
pvs_lapse50 = pd.read_excel(pv_lapse_path, index_col=0)
pvs_mort15 = pd.read_excel(pv_mort_path, index_col=0)
cfs_list = [cfs, cfs_lapse50, cfs_mort15]
scen_titles = ['Base', 'Lapse+50%', 'Mort+15%']
results = {}
mean_attrs = {'age_at_entry':'mean', 'policy_term':'mean', 'duration_mth':'mean', 'sum_assured': 'sum'}
# --- 1. Cashflow Calibration ---
cluster_cfs = Clusters(cfs)
results['cf_total_base_table'] = cluster_cfs.compare_total(cfs)
results['cf_policy_attrs_total'] = cluster_cfs.compare_total(pol_data, agg=mean_attrs)
results['cf_pv_total_base'] = cluster_cfs.compare_total(pvs)
results['cf_pv_total_lapse'] = cluster_cfs.compare_total(pvs_lapse50)
results['cf_pv_total_mort'] = cluster_cfs.compare_total(pvs_mort15)
results['cf_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_cfs, scen_titles)
results['cf_scatter_cashflows_base'] = plot_scatter_comparison(cluster_cfs.compare(cfs), 'Cashflow Calib. - Cashflows (Base)')
# --- 2. Policy Attribute Calibration ---
# Standardize policy attributes
if not pol_data.empty and (pol_data.max() - pol_data.min()).all() != 0:
loc_vars_attrs = (pol_data - pol_data.min()) / (pol_data.max() - pol_data.min())
else:
gr.Warning("Policy data for attribute calibration is empty or has no variance. Skipping attribute calibration plots.")
loc_vars_attrs = pol_data
if not loc_vars_attrs.empty:
cluster_attrs = Clusters(loc_vars_attrs)
results['attr_total_cf_base'] = cluster_attrs.compare_total(cfs)
results['attr_policy_attrs_total'] = cluster_attrs.compare_total(pol_data, agg=mean_attrs)
results['attr_total_pv_base'] = cluster_attrs.compare_total(pvs)
results['attr_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_attrs, scen_titles)
results['attr_scatter_cashflows_base'] = plot_scatter_comparison(cluster_attrs.compare(cfs), 'Policy Attr. Calib. - Cashflows (Base)')
else:
results['attr_total_cf_base'] = pd.DataFrame()
results['attr_policy_attrs_total'] = pd.DataFrame()
results['attr_total_pv_base'] = pd.DataFrame()
results['attr_cashflow_plot'] = None
results['attr_scatter_cashflows_base'] = None
# --- 3. Present Value Calibration ---
cluster_pvs = Clusters(pvs)
results['pv_total_cf_base'] = cluster_pvs.compare_total(cfs)
results['pv_policy_attrs_total'] = cluster_pvs.compare_total(pol_data, agg=mean_attrs)
results['pv_total_pv_base'] = cluster_pvs.compare_total(pvs)
results['pv_total_pv_lapse'] = cluster_pvs.compare_total(pvs_lapse50)
results['pv_total_pv_mort'] = cluster_pvs.compare_total(pvs_mort15)
results['pv_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_pvs, scen_titles)
results['pv_scatter_pvs_base'] = plot_scatter_comparison(cluster_pvs.compare(pvs), 'PV Calib. - PVs (Base)')
# --- Summary Comparison Plot Data ---
# Error metric for key PV column or mean absolute error
error_data = {}
# Function to safely get error value
def get_error_safe(compare_result, col_name=None):
if compare_result.empty:
return np.nan
if col_name and col_name in compare_result.index:
return abs(compare_result.loc[col_name, 'error'])
else:
# Use mean absolute error if specific column not found
return abs(compare_result['error']).mean()
# Determine key PV column (try common names)
key_pv_col = None
for potential_col in ['PV_NetCF', 'pv_net_cf', 'net_cf_pv', 'PV_Net_CF']:
if potential_col in pvs.columns:
key_pv_col = potential_col
break
# Cashflow Calibration Errors
error_data['CF Calib.'] = [
get_error_safe(cluster_cfs.compare_total(pvs), key_pv_col),
get_error_safe(cluster_cfs.compare_total(pvs_lapse50), key_pv_col),
get_error_safe(cluster_cfs.compare_total(pvs_mort15), key_pv_col)
]
# Policy Attribute Calibration Errors
if not loc_vars_attrs.empty:
error_data['Attr Calib.'] = [
get_error_safe(cluster_attrs.compare_total(pvs), key_pv_col),
get_error_safe(cluster_attrs.compare_total(pvs_lapse50), key_pv_col),
get_error_safe(cluster_attrs.compare_total(pvs_mort15), key_pv_col)
]
else:
error_data['Attr Calib.'] = [np.nan, np.nan, np.nan]
# Present Value Calibration Errors
error_data['PV Calib.'] = [
get_error_safe(cluster_pvs.compare_total(pvs), key_pv_col),
get_error_safe(cluster_pvs.compare_total(pvs_lapse50), key_pv_col),
get_error_safe(cluster_pvs.compare_total(pvs_mort15), key_pv_col)
]
# Create Summary Plot
summary_df = pd.DataFrame(error_data, index=['Base', 'Lapse+50%', 'Mort+15%'])
fig_summary, ax_summary = plt.subplots(figsize=(10, 6))
summary_df.plot(kind='bar', ax=ax_summary, grid=True)
ax_summary.set_ylabel('Absolute Error Rate')
title_suffix = f' ({key_pv_col})' if key_pv_col else ' (Mean Absolute Error)'
ax_summary.set_title(f'Calibration Method Comparison - Error in Total PV{title_suffix}')
ax_summary.tick_params(axis='x', rotation=0)
ax_summary.legend(title='Calibration Method')
plt.tight_layout()
buf_summary = io.BytesIO()
plt.savefig(buf_summary, format='png', dpi=100)
buf_summary.seek(0)
results['summary_plot'] = Image.open(buf_summary)
plt.close(fig_summary)
return results
except FileNotFoundError as e:
gr.Error(f"File not found: {e.filename}. Please ensure example files are in '{EXAMPLE_DATA_DIR}' or all files are uploaded.")
return {"error": f"File not found: {e.filename}"}
except KeyError as e:
gr.Error(f"A required column is missing from one of the excel files: {e}. Please check data format.")
return {"error": f"Missing column: {e}"}
except Exception as e:
gr.Error(f"Error processing files: {str(e)}")
return {"error": f"Error processing files: {str(e)}"}
def create_interface():
with gr.Blocks(title="Cluster Model Points Analysis") as demo:
gr.Markdown("""
# Cluster Model Points Analysis
This application applies cluster analysis to model point selection for insurance portfolios.
Upload your Excel files or use the example data to analyze cashflows, policy attributes, and present values using different calibration methods.
**Required Files (Excel .xlsx):**
- Cashflows - Base Scenario
- Cashflows - Lapse Stress (+50%)
- Cashflows - Mortality Stress (+15%)
- Policy Data (including 'age_at_entry', 'policy_term', 'sum_assured', 'duration_mth')
- Present Values - Base Scenario
- Present Values - Lapse Stress
- Present Values - Mortality Stress
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Upload Files or Load Examples")
load_example_btn = gr.Button("Load Example Data")
with gr.Row():
cashflow_base_input = gr.File(label="Cashflows - Base", file_types=[".xlsx"])
cashflow_lapse_input = gr.File(label="Cashflows - Lapse Stress", file_types=[".xlsx"])
cashflow_mort_input = gr.File(label="Cashflows - Mortality Stress", file_types=[".xlsx"])
with gr.Row():
policy_data_input = gr.File(label="Policy Data", file_types=[".xlsx"])
pv_base_input = gr.File(label="Present Values - Base", file_types=[".xlsx"])
pv_lapse_input = gr.File(label="Present Values - Lapse Stress", file_types=[".xlsx"])
with gr.Row():
pv_mort_input = gr.File(label="Present Values - Mortality Stress", file_types=[".xlsx"])
analyze_btn = gr.Button("Analyze Dataset", variant="primary", size="lg")
with gr.Tabs():
with gr.TabItem("📊 Summary"):
summary_plot_output = gr.Image(label="Calibration Methods Comparison")
with gr.TabItem("💸 Cashflow Calibration"):
gr.Markdown("### Results: Using Annual Cashflows as Calibration Variables")
with gr.Row():
cf_total_base_table_out = gr.Dataframe(label="Overall Comparison - Base Scenario (Cashflows)")
cf_policy_attrs_total_out = gr.Dataframe(label="Overall Comparison - Policy Attributes")
cf_cashflow_plot_out = gr.Image(label="Cashflow Value Comparisons (Actual vs. Estimate) Across Scenarios")
cf_scatter_cashflows_base_out = gr.Image(label="Scatter Plot - Per-Cluster Cashflows (Base Scenario)")
with gr.Accordion("Present Value Comparisons (Total)", open=False):
with gr.Row():
cf_pv_total_base_out = gr.Dataframe(label="PVs - Base Total")
cf_pv_total_lapse_out = gr.Dataframe(label="PVs - Lapse Stress Total")
cf_pv_total_mort_out = gr.Dataframe(label="PVs - Mortality Stress Total")
with gr.TabItem("👤 Policy Attribute Calibration"):
gr.Markdown("### Results: Using Policy Attributes as Calibration Variables")
with gr.Row():
attr_total_cf_base_out = gr.Dataframe(label="Overall Comparison - Base Scenario (Cashflows)")
attr_policy_attrs_total_out = gr.Dataframe(label="Overall Comparison - Policy Attributes")
attr_cashflow_plot_out = gr.Image(label="Cashflow Value Comparisons (Actual vs. Estimate) Across Scenarios")
attr_scatter_cashflows_base_out = gr.Image(label="Scatter Plot - Per-Cluster Cashflows (Base Scenario)")
with gr.Accordion("Present Value Comparisons (Total)", open=False):
attr_total_pv_base_out = gr.Dataframe(label="PVs - Base Scenario Total")
with gr.TabItem("💰 Present Value Calibration"):
gr.Markdown("### Results: Using Present Values (Base Scenario) as Calibration Variables")
with gr.Row():
pv_total_cf_base_out = gr.Dataframe(label="Overall Comparison - Base Scenario (Cashflows)")
pv_policy_attrs_total_out = gr.Dataframe(label="Overall Comparison - Policy Attributes")
pv_cashflow_plot_out = gr.Image(label="Cashflow Value Comparisons (Actual vs. Estimate) Across Scenarios")
pv_scatter_pvs_base_out = gr.Image(label="Scatter Plot - Per-Cluster Present Values (Base Scenario)")
with gr.Accordion("Present Value Comparisons (Total)", open=False):
with gr.Row():
pv_total_pv_base_out = gr.Dataframe(label="PVs - Base Total")
pv_total_pv_lapse_out = gr.Dataframe(label="PVs - Lapse Stress Total")
pv_total_pv_mort_out = gr.Dataframe(label="PVs - Mortality Stress Total")
# --- Helper function to prepare outputs ---
def get_all_output_components():
return [
summary_plot_output,
# Cashflow Calib Outputs
cf_total_base_table_out, cf_policy_attrs_total_out,
cf_cashflow_plot_out, cf_scatter_cashflows_base_out,
cf_pv_total_base_out, cf_pv_total_lapse_out, cf_pv_total_mort_out,
# Attribute Calib Outputs
attr_total_cf_base_out, attr_policy_attrs_total_out,
attr_cashflow_plot_out, attr_scatter_cashflows_base_out, attr_total_pv_base_out,
# PV Calib Outputs
pv_total_cf_base_out, pv_policy_attrs_total_out,
pv_cashflow_plot_out, pv_scatter_pvs_base_out,
pv_total_pv_base_out, pv_total_pv_lapse_out, pv_total_pv_mort_out
]
# --- Action for Analyze Button ---
def handle_analysis(f1, f2, f3, f4, f5, f6, f7):
files = [f1, f2, f3, f4, f5, f6, f7]
file_paths = []
for i, f_obj in enumerate(files):
if f_obj is None:
gr.Error(f"Missing file input for argument {i+1}. Please upload all files or load examples.")
return [None] * len(get_all_output_components())
# If f_obj is a Gradio FileData object (from direct upload)
if hasattr(f_obj, 'name') and isinstance(f_obj.name, str):
file_paths.append(f_obj.name)
# If f_obj is already a string path (from example load)
elif isinstance(f_obj, str):
file_paths.append(f_obj)
else:
gr.Error(f"Invalid file input for argument {i+1}. Type: {type(f_obj)}")
return [None] * len(get_all_output_components())
results = process_files(*file_paths)
if "error" in results:
return [None] * len(get_all_output_components())
return [
results.get('summary_plot'),
# CF Calib
results.get('cf_total_base_table'), results.get('cf_policy_attrs_total'),
results.get('cf_cashflow_plot'), results.get('cf_scatter_cashflows_base'),
results.get('cf_pv_total_base'), results.get('cf_pv_total_lapse'), results.get('cf_pv_total_mort'),
# Attr Calib
results.get('attr_total_cf_base'), results.get('attr_policy_attrs_total'),
results.get('attr_cashflow_plot'), results.get('attr_scatter_cashflows_base'), results.get('attr_total_pv_base'),
# PV Calib
results.get('pv_total_cf_base'), results.get('pv_policy_attrs_total'),
results.get('pv_cashflow_plot'), results.get('pv_scatter_pvs_base'),
results.get('pv_total_pv_base'), results.get('pv_total_pv_lapse'), results.get('pv_total_pv_mort')
]
analyze_btn.click(
handle_analysis,
inputs=[cashflow_base_input, cashflow_lapse_input, cashflow_mort_input,
policy_data_input, pv_base_input, pv_lapse_input, pv_mort_input],
outputs=get_all_output_components()
)
# --- Action for Load Example Data Button ---
def load_example_files():
missing_files = [fp for fp in EXAMPLE_FILES.values() if not os.path.exists(fp)]
if missing_files:
gr.Error(f"Missing example data files in '{EXAMPLE_DATA_DIR}': {', '.join(missing_files)}. Please ensure they exist.")
return [None] * 7
gr.Info("Example data paths loaded. Click 'Analyze Dataset'.")
return [
EXAMPLE_FILES["cashflow_base"], EXAMPLE_FILES["cashflow_lapse"], EXAMPLE_FILES["cashflow_mort"],
EXAMPLE_FILES["policy_data"], EXAMPLE_FILES["pv_base"], EXAMPLE_FILES["pv_lapse"],
EXAMPLE_FILES["pv_mort"]
]
load_example_btn.click(
load_example_files,
inputs=[],
outputs=[cashflow_base_input, cashflow_lapse_input, cashflow_mort_input,
policy_data_input, pv_base_input, pv_lapse_input, pv_mort_input]
)
return demo
if __name__ == "__main__":
if not os.path.exists(EXAMPLE_DATA_DIR):
os.makedirs(EXAMPLE_DATA_DIR)
print(f"Created directory '{EXAMPLE_DATA_DIR}'. Please place example Excel files there.")
print(f"Expected files in '{EXAMPLE_DATA_DIR}': {list(EXAMPLE_FILES.values())}")
demo_app = create_interface()
demo_app.launch() |