Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,27 @@ from sklearn.metrics import pairwise_distances_argmin_min, r2_score
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import matplotlib.cm
|
8 |
import io
|
9 |
-
import
|
10 |
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
class Clusters:
|
13 |
def __init__(self, loc_vars):
|
14 |
self.kmeans = kmeans = KMeans(n_clusters=1000, random_state=0, n_init=10).fit(np.ascontiguousarray(loc_vars))
|
15 |
closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, np.ascontiguousarray(loc_vars))
|
16 |
|
17 |
-
rep_ids = pd.Series(data=(closest+1))
|
18 |
rep_ids.name = 'policy_id'
|
19 |
rep_ids.index.name = 'cluster_id'
|
20 |
self.rep_ids = rep_ids
|
@@ -26,7 +38,7 @@ class Clusters:
|
|
26 |
temp = df.copy()
|
27 |
temp['cluster_id'] = self.kmeans.labels_
|
28 |
temp = temp.set_index('cluster_id')
|
29 |
-
agg = {c: (agg[c] if c in agg else 'sum') for c in temp.columns} if agg else "sum"
|
30 |
return temp.groupby(temp.index).agg(agg)
|
31 |
|
32 |
def extract_reps(self, df):
|
@@ -40,7 +52,10 @@ class Clusters:
|
|
40 |
if agg:
|
41 |
cols = df.columns
|
42 |
mult = pd.DataFrame({c: (self.policy_count if (c not in agg or agg[c] == 'sum') else 1) for c in cols})
|
43 |
-
|
|
|
|
|
|
|
44 |
else:
|
45 |
return self.extract_reps(df).mul(self.policy_count, axis=0)
|
46 |
|
@@ -53,307 +68,504 @@ class Clusters:
|
|
53 |
def compare_total(self, df, agg=None):
|
54 |
"""Aggregate df by columns"""
|
55 |
if agg:
|
56 |
-
cols = df.columns
|
57 |
op = {c: (agg[c] if c in agg else 'sum') for c in df.columns}
|
58 |
actual = df.agg(op)
|
59 |
-
estimate = self.extract_and_scale_reps(df, agg=op)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
actual = df.sum()
|
65 |
estimate = self.extract_and_scale_reps(df).sum()
|
66 |
|
67 |
return pd.DataFrame({'actual': actual, 'estimate': estimate, 'error': estimate / actual - 1})
|
68 |
|
69 |
-
def create_plot(plot_func, *args, **kwargs):
|
70 |
-
"""Helper function to create plots and return as image"""
|
71 |
-
plt.figure(figsize=(10, 6))
|
72 |
-
plot_func(*args, **kwargs)
|
73 |
-
|
74 |
-
# Save plot to bytes
|
75 |
-
buf = io.BytesIO()
|
76 |
-
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
77 |
-
buf.seek(0)
|
78 |
-
plt.close()
|
79 |
-
|
80 |
-
return Image.open(buf)
|
81 |
|
82 |
def plot_cashflows_comparison(cfs_list, cluster_obj, titles):
|
83 |
"""Create cashflow comparison plots"""
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
axes = axes.flatten()
|
86 |
|
87 |
for i, (df, title) in enumerate(zip(cfs_list, titles)):
|
88 |
if i < len(axes):
|
89 |
comparison = cluster_obj.compare_total(df)
|
90 |
comparison[['actual', 'estimate']].plot(ax=axes[i], grid=True, title=title)
|
|
|
|
|
91 |
|
|
|
|
|
|
|
|
|
92 |
plt.tight_layout()
|
93 |
buf = io.BytesIO()
|
94 |
-
plt.savefig(buf, format='png', dpi=
|
95 |
buf.seek(0)
|
96 |
-
|
97 |
-
|
98 |
-
return
|
99 |
|
100 |
-
def plot_scatter_comparison(
|
101 |
-
"""Create scatter plot comparison"""
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# Draw identity line
|
116 |
lims = [
|
117 |
-
np.min([
|
118 |
-
np.max([
|
119 |
]
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
123 |
|
124 |
buf = io.BytesIO()
|
125 |
-
plt.savefig(buf, format='png', dpi=
|
126 |
buf.seek(0)
|
127 |
-
|
128 |
-
|
129 |
-
return
|
|
|
130 |
|
131 |
-
def process_files(
|
132 |
-
|
|
|
133 |
try:
|
134 |
-
# Read uploaded files
|
135 |
-
cfs = pd.read_excel(
|
136 |
-
cfs_lapse50 = pd.read_excel(
|
137 |
-
cfs_mort15 = pd.read_excel(
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
cfs_list = [cfs, cfs_lapse50, cfs_mort15]
|
148 |
-
pvs_list = [pvs, pvs_lapse50, pvs_mort15]
|
149 |
scen_titles = ['Base', 'Lapse+50%', 'Mort+15%']
|
150 |
|
151 |
results = {}
|
152 |
|
153 |
-
#
|
|
|
|
|
154 |
cluster_cfs = Clusters(cfs)
|
155 |
|
156 |
-
|
157 |
-
results['
|
158 |
-
results['
|
159 |
-
|
160 |
-
|
161 |
-
# Policy attributes analysis
|
162 |
-
mean_attrs = {'age_at_entry':'mean', 'policy_term':'mean', 'duration_mth':'mean'}
|
163 |
-
results['cf_policy_attrs'] = cluster_cfs.compare_total(pol_data, agg=mean_attrs)
|
164 |
|
165 |
-
|
166 |
-
results['
|
167 |
-
results['
|
168 |
-
results['cf_pv_mort'] = cluster_cfs.compare_total(pvs_mort15)
|
169 |
|
170 |
-
# Create plots for cashflow calibration
|
171 |
results['cf_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_cfs, scen_titles)
|
172 |
-
results['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
results['
|
179 |
-
results['
|
180 |
-
results['attr_pv_base'] = cluster_attrs.compare_total(pvs)
|
181 |
-
results['attr_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_attrs, scen_titles)
|
182 |
-
results['attr_scatter_base'] = plot_scatter_comparison(cluster_attrs.compare(cfs), 'Policy Attribute Calibration - Base Scenario')
|
183 |
|
184 |
-
|
185 |
-
|
|
|
186 |
|
187 |
-
results['pv_cf_base'] = cluster_pvs.compare_total(cfs)
|
188 |
-
results['pv_policy_attrs'] = cluster_pvs.compare_total(pol_data, agg=mean_attrs)
|
189 |
-
results['pv_pv_base'] = cluster_pvs.compare_total(pvs)
|
190 |
-
results['pv_pv_lapse'] = cluster_pvs.compare_total(pvs_lapse50)
|
191 |
-
results['pv_pv_mort'] = cluster_pvs.compare_total(pvs_mort15)
|
192 |
results['pv_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_pvs, scen_titles)
|
193 |
-
results['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
197 |
-
comparison_data = {
|
198 |
-
'Cashflow Calibration': [
|
199 |
-
abs(cluster_cfs.compare_total(cfs)['error'].mean()),
|
200 |
-
abs(cluster_cfs.compare_total(pvs)['error'].mean())
|
201 |
-
],
|
202 |
-
'Policy Attribute Calibration': [
|
203 |
-
abs(cluster_attrs.compare_total(cfs)['error'].mean()),
|
204 |
-
abs(cluster_attrs.compare_total(pvs)['error'].mean())
|
205 |
-
],
|
206 |
-
'Present Value Calibration': [
|
207 |
-
abs(cluster_pvs.compare_total(cfs)['error'].mean()),
|
208 |
-
abs(cluster_pvs.compare_total(pvs)['error'].mean())
|
209 |
-
]
|
210 |
-
}
|
211 |
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
ax.bar(x + width, comparison_data['Present Value Calibration'], width, label='Present Value Calibration')
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
-
|
227 |
-
plt.savefig(
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
|
232 |
return results
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
except Exception as e:
|
|
|
235 |
return {"error": f"Error processing files: {str(e)}"}
|
236 |
|
|
|
237 |
def create_interface():
|
238 |
-
with gr.Blocks(title="Cluster Model Points Analysis"
|
239 |
gr.Markdown("""
|
240 |
# Cluster Model Points Analysis
|
241 |
|
242 |
This application applies cluster analysis to model point selection for insurance portfolios.
|
243 |
-
Upload your Excel files to analyze cashflows, policy attributes, and present values using different calibration methods.
|
244 |
|
245 |
-
**Required Files:**
|
246 |
-
-
|
247 |
-
-
|
248 |
-
-
|
|
|
|
|
|
|
|
|
249 |
""")
|
250 |
|
251 |
with gr.Row():
|
252 |
-
with gr.Column():
|
253 |
-
gr.Markdown("### Upload Files")
|
254 |
-
cashflow_base = gr.File(label="Cashflows - Base Scenario", file_types=[".xlsx"])
|
255 |
-
cashflow_lapse = gr.File(label="Cashflows - Lapse Stress (+50%)", file_types=[".xlsx"])
|
256 |
-
cashflow_mort = gr.File(label="Cashflows - Mortality Stress (+15%)", file_types=[".xlsx"])
|
257 |
-
policy_data = gr.File(label="Policy Data", file_types=[".xlsx"])
|
258 |
-
pv_base = gr.File(label="Present Values - Base Scenario", file_types=[".xlsx"])
|
259 |
-
pv_lapse = gr.File(label="Present Values - Lapse Stress", file_types=[".xlsx"])
|
260 |
-
pv_mort = gr.File(label="Present Values - Mortality Stress", file_types=[".xlsx"])
|
261 |
-
|
262 |
-
analyze_btn = gr.Button("Analyze", variant="primary", size="lg")
|
263 |
-
|
264 |
-
with gr.Tabs():
|
265 |
-
with gr.TabItem("Summary"):
|
266 |
-
summary_plot = gr.Image(label="Calibration Methods Comparison")
|
267 |
|
268 |
-
|
269 |
-
gr.Markdown("### Results using Annual Cashflows as Calibration Variables")
|
270 |
|
271 |
with gr.Row():
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
cf_cashflow_plot = gr.Image(label="Cashflow Comparisons Across Scenarios")
|
276 |
-
cf_scatter_base = gr.Image(label="Scatter Plot - Base Scenario")
|
277 |
-
|
278 |
with gr.Row():
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
with gr.TabItem("Policy Attribute Calibration"):
|
284 |
-
gr.Markdown("### Results using Policy Attributes as Calibration Variables")
|
285 |
-
|
286 |
with gr.Row():
|
287 |
-
|
288 |
-
attr_policy_attrs = gr.Dataframe(label="Policy Attributes Comparison")
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
293 |
|
294 |
-
with gr.TabItem("
|
295 |
-
gr.Markdown("### Results
|
296 |
-
|
297 |
with gr.Row():
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
with gr.Row():
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
312 |
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
if "error" in results:
|
316 |
-
|
317 |
-
return [None] *
|
318 |
|
319 |
return [
|
320 |
results.get('summary_plot'),
|
321 |
-
|
322 |
-
results.get('
|
323 |
-
results.get('cf_cashflow_plot'),
|
324 |
-
results.get('
|
325 |
-
|
326 |
-
results.get('
|
327 |
-
results.get('
|
328 |
-
|
329 |
-
results.get('
|
330 |
-
results.get('
|
331 |
-
results.get('
|
332 |
-
results.get('attr_pv_base'),
|
333 |
-
results.get('pv_cf_base'),
|
334 |
-
results.get('pv_policy_attrs'),
|
335 |
-
results.get('pv_cashflow_plot'),
|
336 |
-
results.get('pv_scatter_base'),
|
337 |
-
results.get('pv_pv_base'),
|
338 |
-
results.get('pv_pv_lapse'),
|
339 |
-
results.get('pv_pv_mort')
|
340 |
]
|
341 |
-
|
342 |
analyze_btn.click(
|
343 |
-
|
344 |
-
inputs=[
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
)
|
354 |
-
|
355 |
return demo
|
356 |
|
357 |
if __name__ == "__main__":
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import matplotlib.cm
|
8 |
import io
|
9 |
+
import os # Added for path joining
|
10 |
from PIL import Image
|
11 |
|
12 |
+
# Define the paths for example data
|
13 |
+
EXAMPLE_DATA_DIR = "eg_data"
|
14 |
+
EXAMPLE_FILES = {
|
15 |
+
"cashflow_base": os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K.xlsx"),
|
16 |
+
"cashflow_lapse": os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K_lapse50.xlsx"),
|
17 |
+
"cashflow_mort": os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K_mort15.xlsx"),
|
18 |
+
"policy_data": os.path.join(EXAMPLE_DATA_DIR, "model_point_table.xlsx"), # Assuming this is the correct path/name for the example
|
19 |
+
"pv_base": os.path.join(EXAMPLE_DATA_DIR, "pv_seriatim_10K.xlsx"),
|
20 |
+
"pv_lapse": os.path.join(EXAMPLE_DATA_DIR, "pv_seriatim_10K_lapse50.xlsx"),
|
21 |
+
"pv_mort": os.path.join(EXAMPLE_DATA_DIR, "pv_seriatim_10K_mort15.xlsx"),
|
22 |
+
}
|
23 |
+
|
24 |
class Clusters:
|
25 |
def __init__(self, loc_vars):
|
26 |
self.kmeans = kmeans = KMeans(n_clusters=1000, random_state=0, n_init=10).fit(np.ascontiguousarray(loc_vars))
|
27 |
closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, np.ascontiguousarray(loc_vars))
|
28 |
|
29 |
+
rep_ids = pd.Series(data=(closest+1)) # 0-based to 1-based indexes
|
30 |
rep_ids.name = 'policy_id'
|
31 |
rep_ids.index.name = 'cluster_id'
|
32 |
self.rep_ids = rep_ids
|
|
|
38 |
temp = df.copy()
|
39 |
temp['cluster_id'] = self.kmeans.labels_
|
40 |
temp = temp.set_index('cluster_id')
|
41 |
+
agg = {c: (agg[c] if agg and c in agg else 'sum') for c in temp.columns} if agg else "sum"
|
42 |
return temp.groupby(temp.index).agg(agg)
|
43 |
|
44 |
def extract_reps(self, df):
|
|
|
52 |
if agg:
|
53 |
cols = df.columns
|
54 |
mult = pd.DataFrame({c: (self.policy_count if (c not in agg or agg[c] == 'sum') else 1) for c in cols})
|
55 |
+
# Ensure mult has same index as extract_reps(df) for proper alignment
|
56 |
+
extracted_df = self.extract_reps(df)
|
57 |
+
mult.index = extracted_df.index
|
58 |
+
return extracted_df.mul(mult)
|
59 |
else:
|
60 |
return self.extract_reps(df).mul(self.policy_count, axis=0)
|
61 |
|
|
|
68 |
def compare_total(self, df, agg=None):
|
69 |
"""Aggregate df by columns"""
|
70 |
if agg:
|
71 |
+
# cols = df.columns # Not used
|
72 |
op = {c: (agg[c] if c in agg else 'sum') for c in df.columns}
|
73 |
actual = df.agg(op)
|
|
|
74 |
|
75 |
+
# For estimate, ensure aggregation ops are correctly applied *after* scaling
|
76 |
+
scaled_reps = self.extract_and_scale_reps(df, agg=op) # Pass op to ensure correct scaling for mean
|
77 |
+
|
78 |
+
# Corrected aggregation for estimate when 'mean' is involved
|
79 |
+
estimate_agg_ops = {}
|
80 |
+
for col_name, agg_type in op.items():
|
81 |
+
if agg_type == 'mean':
|
82 |
+
# Weighted average for mean columns
|
83 |
+
estimate_agg_ops[col_name] = lambda s, c=col_name: (s * self.policy_count.reindex(s.index)).sum() / self.policy_count.reindex(s.index).sum() if c in self.policy_count.name else s.mean()
|
84 |
+
else: # 'sum'
|
85 |
+
estimate_agg_ops[col_name] = 'sum'
|
86 |
+
|
87 |
+
# Need to handle the case where extract_and_scale_reps already applied scaling for sum
|
88 |
+
# The logic in extract_and_scale_reps is:
|
89 |
+
# mult = pd.DataFrame({c: (self.policy_count if (c not in agg or agg[c] == 'sum') else 1) for c in cols})
|
90 |
+
# This means 'mean' columns are NOT multiplied by policy_count initially.
|
91 |
+
|
92 |
+
# Let's re-think the estimate aggregation for 'mean'
|
93 |
+
estimate_scaled = self.extract_and_scale_reps(df, agg=op) # agg=op is important here
|
94 |
+
|
95 |
+
final_estimate_ops = {}
|
96 |
+
for col, method in op.items():
|
97 |
+
if method == 'mean':
|
98 |
+
# For mean, we need the sum of (value * policy_count) / sum(policy_count)
|
99 |
+
# extract_and_scale_reps with agg=op should have scaled sum-columns by policy_count
|
100 |
+
# and mean-columns by 1. So, for mean columns in estimate_scaled, we need to multiply by policy_count,
|
101 |
+
# sum them up, and divide by total policy_count.
|
102 |
+
# However, the current extract_and_scale_reps scales 'mean' columns by 1.
|
103 |
+
# So we need to take the mean of these scaled (by 1) values, but it should be a weighted mean.
|
104 |
+
|
105 |
+
# Let's try to be more direct:
|
106 |
+
# Get the representative policies (unscaled for mean columns)
|
107 |
+
reps_unscaled_for_mean = self.extract_reps(df)
|
108 |
+
estimate_values = {}
|
109 |
+
for c in df.columns:
|
110 |
+
if op[c] == 'sum':
|
111 |
+
estimate_values[c] = reps_unscaled_for_mean[c].mul(self.policy_count, axis=0).sum()
|
112 |
+
elif op[c] == 'mean':
|
113 |
+
weighted_sum = (reps_unscaled_for_mean[c] * self.policy_count).sum()
|
114 |
+
total_weight = self.policy_count.sum()
|
115 |
+
estimate_values[c] = weighted_sum / total_weight if total_weight else 0
|
116 |
+
estimate = pd.Series(estimate_values)
|
117 |
+
|
118 |
+
else: # original 'sum' logic for all columns
|
119 |
+
final_estimate_ops[col] = 'sum' # All columns in estimate_scaled are ready to be summed up
|
120 |
+
estimate = estimate_scaled.agg(final_estimate_ops)
|
121 |
+
|
122 |
+
|
123 |
+
else: # Original logic if no agg is specified (all sum)
|
124 |
actual = df.sum()
|
125 |
estimate = self.extract_and_scale_reps(df).sum()
|
126 |
|
127 |
return pd.DataFrame({'actual': actual, 'estimate': estimate, 'error': estimate / actual - 1})
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def plot_cashflows_comparison(cfs_list, cluster_obj, titles):
|
131 |
"""Create cashflow comparison plots"""
|
132 |
+
if not cfs_list or not cluster_obj or not titles:
|
133 |
+
return None # Or a placeholder image
|
134 |
+
num_plots = len(cfs_list)
|
135 |
+
if num_plots == 0:
|
136 |
+
return None
|
137 |
+
|
138 |
+
# Determine subplot layout (e.g., 2x2 or adapt)
|
139 |
+
cols = 2
|
140 |
+
rows = (num_plots + cols - 1) // cols
|
141 |
+
|
142 |
+
fig, axes = plt.subplots(rows, cols, figsize=(15, 5 * rows), squeeze=False) # Ensure axes is always 2D
|
143 |
axes = axes.flatten()
|
144 |
|
145 |
for i, (df, title) in enumerate(zip(cfs_list, titles)):
|
146 |
if i < len(axes):
|
147 |
comparison = cluster_obj.compare_total(df)
|
148 |
comparison[['actual', 'estimate']].plot(ax=axes[i], grid=True, title=title)
|
149 |
+
axes[i].set_xlabel('Time') # Assuming x-axis is time for cashflows
|
150 |
+
axes[i].set_ylabel('Value')
|
151 |
|
152 |
+
# Hide any unused subplots
|
153 |
+
for j in range(i + 1, len(axes)):
|
154 |
+
fig.delaxes(axes[j])
|
155 |
+
|
156 |
plt.tight_layout()
|
157 |
buf = io.BytesIO()
|
158 |
+
plt.savefig(buf, format='png', dpi=100) # Lowered DPI slightly for potentially faster rendering
|
159 |
buf.seek(0)
|
160 |
+
img = Image.open(buf)
|
161 |
+
plt.close(fig) # Ensure figure is closed
|
162 |
+
return img
|
163 |
|
164 |
+
def plot_scatter_comparison(df_compare_output, title):
|
165 |
+
"""Create scatter plot comparison from compare() output"""
|
166 |
+
if df_compare_output is None or df_compare_output.empty:
|
167 |
+
# Create a blank plot with a message
|
168 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
169 |
+
ax.text(0.5, 0.5, "No data to display", ha='center', va='center', fontsize=15)
|
170 |
+
ax.set_title(title)
|
171 |
+
buf = io.BytesIO()
|
172 |
+
plt.savefig(buf, format='png', dpi=100)
|
173 |
+
buf.seek(0)
|
174 |
+
img = Image.open(buf)
|
175 |
+
plt.close(fig)
|
176 |
+
return img
|
177 |
+
|
178 |
+
fig, ax = plt.subplots(figsize=(12, 8)) # Use a single Axes object
|
179 |
|
180 |
+
if not isinstance(df_compare_output.index, pd.MultiIndex) or df_compare_output.index.nlevels < 2:
|
181 |
+
gr.Warning("Scatter plot data is not in the expected multi-index format. Plotting raw actual vs estimate.")
|
182 |
+
ax.scatter(df_compare_output['actual'], df_compare_output['estimate'], s=9, alpha=0.6)
|
183 |
+
else:
|
184 |
+
unique_levels = df_compare_output.index.get_level_values(1).unique()
|
185 |
+
colors = matplotlib.cm.rainbow(np.linspace(0, 1, len(unique_levels)))
|
186 |
+
|
187 |
+
for item_level, color_val in zip(unique_levels, colors):
|
188 |
+
subset = df_compare_output.xs(item_level, level=1)
|
189 |
+
ax.scatter(subset['actual'], subset['estimate'], color=color_val, s=9, alpha=0.6, label=item_level)
|
190 |
+
if len(unique_levels) > 1 and len(unique_levels) <=10: # Add legend if not too many items
|
191 |
+
ax.legend(title=df_compare_output.index.names[1])
|
192 |
+
|
193 |
+
|
194 |
+
ax.set_xlabel('Actual')
|
195 |
+
ax.set_ylabel('Estimate')
|
196 |
+
ax.set_title(title)
|
197 |
+
ax.grid(True)
|
198 |
|
199 |
# Draw identity line
|
200 |
lims = [
|
201 |
+
np.min([ax.get_xlim(), ax.get_ylim()]),
|
202 |
+
np.max([ax.get_xlim(), ax.get_ylim()]),
|
203 |
]
|
204 |
+
if lims[0] != lims[1]: # Avoid issues if all data is zero or a single point
|
205 |
+
ax.plot(lims, lims, 'r-', linewidth=0.5)
|
206 |
+
ax.set_xlim(lims)
|
207 |
+
ax.set_ylim(lims)
|
208 |
|
209 |
buf = io.BytesIO()
|
210 |
+
plt.savefig(buf, format='png', dpi=100)
|
211 |
buf.seek(0)
|
212 |
+
img = Image.open(buf)
|
213 |
+
plt.close(fig)
|
214 |
+
return img
|
215 |
+
|
216 |
|
217 |
+
def process_files(cashflow_base_path, cashflow_lapse_path, cashflow_mort_path,
|
218 |
+
policy_data_path, pv_base_path, pv_lapse_path, pv_mort_path):
|
219 |
+
"""Main processing function - now accepts file paths"""
|
220 |
try:
|
221 |
+
# Read uploaded files using paths
|
222 |
+
cfs = pd.read_excel(cashflow_base_path, index_col=0)
|
223 |
+
cfs_lapse50 = pd.read_excel(cashflow_lapse_path, index_col=0)
|
224 |
+
cfs_mort15 = pd.read_excel(cashflow_mort_path, index_col=0)
|
225 |
|
226 |
+
pol_data_full = pd.read_excel(policy_data_path, index_col=0)
|
227 |
+
# Ensure the correct columns are selected for pol_data
|
228 |
+
required_cols = ['age_at_entry', 'policy_term', 'sum_assured', 'duration_mth']
|
229 |
+
if all(col in pol_data_full.columns for col in required_cols):
|
230 |
+
pol_data = pol_data_full[required_cols]
|
231 |
+
else:
|
232 |
+
# Fallback or error if columns are missing. For now, try to use as is or a subset.
|
233 |
+
gr.Warning(f"Policy data might be missing required columns. Found: {pol_data_full.columns.tolist()}")
|
234 |
+
pol_data = pol_data_full
|
235 |
+
|
236 |
+
|
237 |
+
pvs = pd.read_excel(pv_base_path, index_col=0)
|
238 |
+
pvs_lapse50 = pd.read_excel(pv_lapse_path, index_col=0)
|
239 |
+
pvs_mort15 = pd.read_excel(pv_mort_path, index_col=0)
|
240 |
|
241 |
cfs_list = [cfs, cfs_lapse50, cfs_mort15]
|
242 |
+
# pvs_list = [pvs, pvs_lapse50, pvs_mort15] # Not directly used for plotting in this structure
|
243 |
scen_titles = ['Base', 'Lapse+50%', 'Mort+15%']
|
244 |
|
245 |
results = {}
|
246 |
|
247 |
+
mean_attrs = {'age_at_entry':'mean', 'policy_term':'mean', 'duration_mth':'mean', 'sum_assured': 'sum'} # sum_assured is usually summed
|
248 |
+
|
249 |
+
# --- 1. Cashflow Calibration ---
|
250 |
cluster_cfs = Clusters(cfs)
|
251 |
|
252 |
+
results['cf_total_base_table'] = cluster_cfs.compare_total(cfs)
|
253 |
+
# results['cf_total_lapse_table'] = cluster_cfs.compare_total(cfs_lapse50) # For full detail if needed
|
254 |
+
# results['cf_total_mort_table'] = cluster_cfs.compare_total(cfs_mort15)
|
255 |
+
|
256 |
+
results['cf_policy_attrs_total'] = cluster_cfs.compare_total(pol_data, agg=mean_attrs)
|
|
|
|
|
|
|
257 |
|
258 |
+
results['cf_pv_total_base'] = cluster_cfs.compare_total(pvs)
|
259 |
+
results['cf_pv_total_lapse'] = cluster_cfs.compare_total(pvs_lapse50)
|
260 |
+
results['cf_pv_total_mort'] = cluster_cfs.compare_total(pvs_mort15)
|
|
|
261 |
|
|
|
262 |
results['cf_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_cfs, scen_titles)
|
263 |
+
results['cf_scatter_cashflows_base'] = plot_scatter_comparison(cluster_cfs.compare(cfs), 'Cashflow Calib. - Cashflows (Base)')
|
264 |
+
# results['cf_scatter_policy_attrs'] = plot_scatter_comparison(cluster_cfs.compare(pol_data, agg=mean_attrs), 'Cashflow Calib. - Policy Attributes')
|
265 |
+
# results['cf_scatter_pvs_base'] = plot_scatter_comparison(cluster_cfs.compare(pvs), 'Cashflow Calib. - PVs (Base)')
|
266 |
+
|
267 |
+
# --- 2. Policy Attribute Calibration ---
|
268 |
+
# Standardize policy attributes
|
269 |
+
if not pol_data.empty and (pol_data.max() - pol_data.min()).all() != 0 : # Avoid division by zero if a column is constant
|
270 |
+
loc_vars_attrs = (pol_data - pol_data.min()) / (pol_data.max() - pol_data.min())
|
271 |
+
else:
|
272 |
+
gr.Warning("Policy data for attribute calibration is empty or has no variance. Skipping attribute calibration plots.")
|
273 |
+
loc_vars_attrs = pol_data # or handle as an error/skip
|
274 |
|
275 |
+
if not loc_vars_attrs.empty:
|
276 |
+
cluster_attrs = Clusters(loc_vars_attrs)
|
277 |
+
results['attr_total_cf_base'] = cluster_attrs.compare_total(cfs)
|
278 |
+
results['attr_policy_attrs_total'] = cluster_attrs.compare_total(pol_data, agg=mean_attrs)
|
279 |
+
results['attr_total_pv_base'] = cluster_attrs.compare_total(pvs)
|
280 |
+
results['attr_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_attrs, scen_titles)
|
281 |
+
results['attr_scatter_cashflows_base'] = plot_scatter_comparison(cluster_attrs.compare(cfs), 'Policy Attr. Calib. - Cashflows (Base)')
|
282 |
+
# results['attr_scatter_policy_attrs'] = plot_scatter_comparison(cluster_attrs.compare(pol_data, agg=mean_attrs), 'Policy Attr. Calib. - Policy Attributes')
|
283 |
+
|
284 |
+
else: # Fill with None if skipped
|
285 |
+
results['attr_total_cf_base'] = pd.DataFrame()
|
286 |
+
results['attr_policy_attrs_total'] = pd.DataFrame()
|
287 |
+
results['attr_total_pv_base'] = pd.DataFrame()
|
288 |
+
results['attr_cashflow_plot'] = None
|
289 |
+
results['attr_scatter_cashflows_base'] = None
|
290 |
+
|
291 |
+
|
292 |
+
# --- 3. Present Value Calibration ---
|
293 |
+
cluster_pvs = Clusters(pvs)
|
294 |
|
295 |
+
results['pv_total_cf_base'] = cluster_pvs.compare_total(cfs)
|
296 |
+
results['pv_policy_attrs_total'] = cluster_pvs.compare_total(pol_data, agg=mean_attrs)
|
|
|
|
|
|
|
297 |
|
298 |
+
results['pv_total_pv_base'] = cluster_pvs.compare_total(pvs)
|
299 |
+
results['pv_total_pv_lapse'] = cluster_pvs.compare_total(pvs_lapse50)
|
300 |
+
results['pv_total_pv_mort'] = cluster_pvs.compare_total(pvs_mort15)
|
301 |
|
|
|
|
|
|
|
|
|
|
|
302 |
results['pv_cashflow_plot'] = plot_cashflows_comparison(cfs_list, cluster_pvs, scen_titles)
|
303 |
+
results['pv_scatter_pvs_base'] = plot_scatter_comparison(cluster_pvs.compare(pvs), 'PV Calib. - PVs (Base)')
|
304 |
+
# results['pv_scatter_cashflows_base'] = plot_scatter_comparison(cluster_pvs.compare(cfs), 'PV Calib. - Cashflows (Base)')
|
305 |
+
|
306 |
+
|
307 |
+
# --- Summary Comparison Plot Data ---
|
308 |
+
# Error metric: Mean Absolute Percentage Error for the 'TOTAL' net present value of cashflows (usually the 'PV_NetCF' column)
|
309 |
+
# Or sum of absolute errors if percentage is problematic (e.g. actual is zero)
|
310 |
+
# For simplicity, using mean of the 'error' column from compare_total for key metrics
|
311 |
|
312 |
+
error_data = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
# Cashflow Calibration Errors
|
315 |
+
if 'PV_NetCF' in pvs.columns:
|
316 |
+
err_cf_cal_pv_base = cluster_cfs.compare_total(pvs).loc['PV_NetCF', 'error']
|
317 |
+
err_cf_cal_pv_lapse = cluster_cfs.compare_total(pvs_lapse50).loc['PV_NetCF', 'error']
|
318 |
+
err_cf_cal_pv_mort = cluster_cfs.compare_total(pvs_mort15).loc['PV_NetCF', 'error']
|
319 |
+
error_data['CF Calib. (PV NetCF)'] = [
|
320 |
+
abs(err_cf_cal_pv_base), abs(err_cf_cal_pv_lapse), abs(err_cf_cal_pv_mort)
|
321 |
+
]
|
322 |
+
else: # Fallback if PV_NetCF is not present
|
323 |
+
error_data['CF Calib. (PV NetCF)'] = [
|
324 |
+
abs(cluster_cfs.compare_total(pvs)['error'].mean()),
|
325 |
+
abs(cluster_cfs.compare_total(pvs_lapse50)['error'].mean()),
|
326 |
+
abs(cluster_cfs.compare_total(pvs_mort15)['error'].mean())
|
327 |
+
]
|
328 |
+
|
329 |
+
|
330 |
+
# Policy Attribute Calibration Errors
|
331 |
+
if not loc_vars_attrs.empty and 'PV_NetCF' in pvs.columns:
|
332 |
+
err_attr_cal_pv_base = cluster_attrs.compare_total(pvs).loc['PV_NetCF', 'error']
|
333 |
+
err_attr_cal_pv_lapse = cluster_attrs.compare_total(pvs_lapse50).loc['PV_NetCF', 'error']
|
334 |
+
err_attr_cal_pv_mort = cluster_attrs.compare_total(pvs_mort15).loc['PV_NetCF', 'error']
|
335 |
+
error_data['Attr Calib. (PV NetCF)'] = [
|
336 |
+
abs(err_attr_cal_pv_base), abs(err_attr_cal_pv_lapse), abs(err_attr_cal_pv_mort)
|
337 |
+
]
|
338 |
+
else:
|
339 |
+
error_data['Attr Calib. (PV NetCF)'] = [np.nan, np.nan, np.nan] # Placeholder if skipped
|
340 |
+
|
341 |
+
|
342 |
+
# Present Value Calibration Errors
|
343 |
+
if 'PV_NetCF' in pvs.columns:
|
344 |
+
err_pv_cal_pv_base = cluster_pvs.compare_total(pvs).loc['PV_NetCF', 'error']
|
345 |
+
err_pv_cal_pv_lapse = cluster_pvs.compare_total(pvs_lapse50).loc['PV_NetCF', 'error']
|
346 |
+
err_pv_cal_pv_mort = cluster_pvs.compare_total(pvs_mort15).loc['PV_NetCF', 'error']
|
347 |
+
error_data['PV Calib. (PV NetCF)'] = [
|
348 |
+
abs(err_pv_cal_pv_base), abs(err_pv_cal_pv_lapse), abs(err_pv_cal_pv_mort)
|
349 |
+
]
|
350 |
+
else:
|
351 |
+
error_data['PV Calib. (PV NetCF)'] = [
|
352 |
+
abs(cluster_pvs.compare_total(pvs)['error'].mean()),
|
353 |
+
abs(cluster_pvs.compare_total(pvs_lapse50)['error'].mean()),
|
354 |
+
abs(cluster_pvs.compare_total(pvs_mort15)['error'].mean())
|
355 |
+
]
|
356 |
|
357 |
+
# Create Summary Plot
|
358 |
+
summary_df = pd.DataFrame(error_data, index=['Base', 'Lapse+50%', 'Mort+15%'])
|
|
|
359 |
|
360 |
+
fig_summary, ax_summary = plt.subplots(figsize=(10, 6))
|
361 |
+
summary_df.plot(kind='bar', ax=ax_summary, grid=True)
|
362 |
+
ax_summary.set_ylabel('Mean Absolute Error (of PV_NetCF)')
|
363 |
+
ax_summary.set_title('Calibration Method Comparison - Error in Total PV Net Cashflow')
|
364 |
+
ax_summary.tick_params(axis='x', rotation=0)
|
365 |
+
plt.tight_layout()
|
366 |
|
367 |
+
buf_summary = io.BytesIO()
|
368 |
+
plt.savefig(buf_summary, format='png', dpi=100)
|
369 |
+
buf_summary.seek(0)
|
370 |
+
results['summary_plot'] = Image.open(buf_summary)
|
371 |
+
plt.close(fig_summary)
|
372 |
|
373 |
return results
|
374 |
|
375 |
+
except FileNotFoundError as e:
|
376 |
+
gr.Error(f"File not found: {e.filename}. Please ensure example files are in '{EXAMPLE_DATA_DIR}' or all files are uploaded.")
|
377 |
+
return {"error": f"File not found: {e.filename}"}
|
378 |
+
except KeyError as e:
|
379 |
+
gr.Error(f"A required column is missing from one of the excel files: {e}. Please check data format.")
|
380 |
+
return {"error": f"Missing column: {e}"}
|
381 |
except Exception as e:
|
382 |
+
gr.Error(f"Error processing files: {str(e)}")
|
383 |
return {"error": f"Error processing files: {str(e)}"}
|
384 |
|
385 |
+
|
386 |
def create_interface():
|
387 |
+
with gr.Blocks(title="Cluster Model Points Analysis") as demo: # Removed theme
|
388 |
gr.Markdown("""
|
389 |
# Cluster Model Points Analysis
|
390 |
|
391 |
This application applies cluster analysis to model point selection for insurance portfolios.
|
392 |
+
Upload your Excel files or use the example data to analyze cashflows, policy attributes, and present values using different calibration methods.
|
393 |
|
394 |
+
**Required Files (Excel .xlsx):**
|
395 |
+
- Cashflows - Base Scenario
|
396 |
+
- Cashflows - Lapse Stress (+50%)
|
397 |
+
- Cashflows - Mortality Stress (+15%)
|
398 |
+
- Policy Data (including 'age_at_entry', 'policy_term', 'sum_assured', 'duration_mth')
|
399 |
+
- Present Values - Base Scenario
|
400 |
+
- Present Values - Lapse Stress
|
401 |
+
- Present Values - Mortality Stress
|
402 |
""")
|
403 |
|
404 |
with gr.Row():
|
405 |
+
with gr.Column(scale=1):
|
406 |
+
gr.Markdown("### Upload Files or Load Examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
|
408 |
+
load_example_btn = gr.Button("Load Example Data")
|
|
|
409 |
|
410 |
with gr.Row():
|
411 |
+
cashflow_base_input = gr.File(label="Cashflows - Base", file_types=[".xlsx"])
|
412 |
+
cashflow_lapse_input = gr.File(label="Cashflows - Lapse Stress", file_types=[".xlsx"])
|
413 |
+
cashflow_mort_input = gr.File(label="Cashflows - Mortality Stress", file_types=[".xlsx"])
|
|
|
|
|
|
|
414 |
with gr.Row():
|
415 |
+
policy_data_input = gr.File(label="Policy Data", file_types=[".xlsx"])
|
416 |
+
pv_base_input = gr.File(label="Present Values - Base", file_types=[".xlsx"])
|
417 |
+
pv_lapse_input = gr.File(label="Present Values - Lapse Stress", file_types=[".xlsx"])
|
|
|
|
|
|
|
|
|
418 |
with gr.Row():
|
419 |
+
pv_mort_input = gr.File(label="Present Values - Mortality Stress", file_types=[".xlsx"])
|
|
|
420 |
|
421 |
+
analyze_btn = gr.Button("Analyze Dataset", variant="primary", size="lg")
|
422 |
+
|
423 |
+
with gr.Tabs():
|
424 |
+
with gr.TabItem("📊 Summary"):
|
425 |
+
summary_plot_output = gr.Image(label="Calibration Methods Comparison (Error in Total PV Net Cashflow)")
|
426 |
|
427 |
+
with gr.TabItem("💸 Cashflow Calibration"):
|
428 |
+
gr.Markdown("### Results: Using Annual Cashflows as Calibration Variables")
|
|
|
429 |
with gr.Row():
|
430 |
+
cf_total_base_table_out = gr.Dataframe(label="Overall Comparison - Base Scenario (Cashflows)")
|
431 |
+
cf_policy_attrs_total_out = gr.Dataframe(label="Overall Comparison - Policy Attributes")
|
432 |
+
cf_cashflow_plot_out = gr.Image(label="Cashflow Value Comparisons (Actual vs. Estimate) Across Scenarios")
|
433 |
+
cf_scatter_cashflows_base_out = gr.Image(label="Scatter Plot - Per-Cluster Cashflows (Base Scenario)")
|
434 |
+
with gr.Accordion("Present Value Comparisons (Total)", open=False):
|
435 |
+
with gr.Row():
|
436 |
+
cf_pv_total_base_out = gr.Dataframe(label="PVs - Base Total")
|
437 |
+
cf_pv_total_lapse_out = gr.Dataframe(label="PVs - Lapse Stress Total")
|
438 |
+
cf_pv_total_mort_out = gr.Dataframe(label="PVs - Mortality Stress Total")
|
439 |
+
|
440 |
+
with gr.TabItem("👤 Policy Attribute Calibration"):
|
441 |
+
gr.Markdown("### Results: Using Policy Attributes as Calibration Variables")
|
442 |
+
with gr.Row():
|
443 |
+
attr_total_cf_base_out = gr.Dataframe(label="Overall Comparison - Base Scenario (Cashflows)")
|
444 |
+
attr_policy_attrs_total_out = gr.Dataframe(label="Overall Comparison - Policy Attributes")
|
445 |
+
attr_cashflow_plot_out = gr.Image(label="Cashflow Value Comparisons (Actual vs. Estimate) Across Scenarios")
|
446 |
+
attr_scatter_cashflows_base_out = gr.Image(label="Scatter Plot - Per-Cluster Cashflows (Base Scenario)")
|
447 |
+
with gr.Accordion("Present Value Comparisons (Total)", open=False):
|
448 |
+
attr_total_pv_base_out = gr.Dataframe(label="PVs - Base Scenario Total")
|
449 |
+
|
450 |
+
with gr.TabItem("💰 Present Value Calibration"):
|
451 |
+
gr.Markdown("### Results: Using Present Values (Base Scenario) as Calibration Variables")
|
452 |
with gr.Row():
|
453 |
+
pv_total_cf_base_out = gr.Dataframe(label="Overall Comparison - Base Scenario (Cashflows)")
|
454 |
+
pv_policy_attrs_total_out = gr.Dataframe(label="Overall Comparison - Policy Attributes")
|
455 |
+
pv_cashflow_plot_out = gr.Image(label="Cashflow Value Comparisons (Actual vs. Estimate) Across Scenarios")
|
456 |
+
pv_scatter_pvs_base_out = gr.Image(label="Scatter Plot - Per-Cluster Present Values (Base Scenario)")
|
457 |
+
with gr.Accordion("Present Value Comparisons (Total)", open=False):
|
458 |
+
with gr.Row():
|
459 |
+
pv_total_pv_base_out = gr.Dataframe(label="PVs - Base Total")
|
460 |
+
pv_total_pv_lapse_out = gr.Dataframe(label="PVs - Lapse Stress Total")
|
461 |
+
pv_total_pv_mort_out = gr.Dataframe(label="PVs - Mortality Stress Total")
|
462 |
+
|
463 |
+
# --- Helper function to prepare outputs ---
|
464 |
+
def get_all_output_components():
|
465 |
+
return [
|
466 |
+
summary_plot_output,
|
467 |
+
# Cashflow Calib Outputs
|
468 |
+
cf_total_base_table_out, cf_policy_attrs_total_out,
|
469 |
+
cf_cashflow_plot_out, cf_scatter_cashflows_base_out,
|
470 |
+
cf_pv_total_base_out, cf_pv_total_lapse_out, cf_pv_total_mort_out,
|
471 |
+
# Attribute Calib Outputs
|
472 |
+
attr_total_cf_base_out, attr_policy_attrs_total_out,
|
473 |
+
attr_cashflow_plot_out, attr_scatter_cashflows_base_out, attr_total_pv_base_out,
|
474 |
+
# PV Calib Outputs
|
475 |
+
pv_total_cf_base_out, pv_policy_attrs_total_out,
|
476 |
+
pv_cashflow_plot_out, pv_scatter_pvs_base_out,
|
477 |
+
pv_total_pv_base_out, pv_total_pv_lapse_out, pv_total_pv_mort_out
|
478 |
+
]
|
479 |
|
480 |
+
# --- Action for Analyze Button ---
|
481 |
+
def handle_analysis(f1, f2, f3, f4, f5, f6, f7):
|
482 |
+
# Ensure all files are provided (either by upload or example load)
|
483 |
+
files = [f1, f2, f3, f4, f5, f6, f7]
|
484 |
+
# Gradio File objects have a .name attribute for the temp path
|
485 |
+
# If they are already strings (from example load), they are paths
|
486 |
|
487 |
+
file_paths = []
|
488 |
+
for i, f_obj in enumerate(files):
|
489 |
+
if f_obj is None:
|
490 |
+
gr.Error(f"Missing file input for argument {i+1}. Please upload all files or load examples.")
|
491 |
+
# Return Nones for all output components
|
492 |
+
return [None] * len(get_all_output_components())
|
493 |
+
|
494 |
+
# If f_obj is a Gradio FileData object (from direct upload)
|
495 |
+
if hasattr(f_obj, 'name') and isinstance(f_obj.name, str):
|
496 |
+
file_paths.append(f_obj.name)
|
497 |
+
# If f_obj is already a string path (from example load)
|
498 |
+
elif isinstance(f_obj, str):
|
499 |
+
file_paths.append(f_obj)
|
500 |
+
else:
|
501 |
+
gr.Error(f"Invalid file input for argument {i+1}. Type: {type(f_obj)}")
|
502 |
+
return [None] * len(get_all_output_components())
|
503 |
+
|
504 |
+
|
505 |
+
results = process_files(*file_paths)
|
506 |
|
507 |
if "error" in results:
|
508 |
+
# Error already displayed by process_files or here
|
509 |
+
return [None] * len(get_all_output_components())
|
510 |
|
511 |
return [
|
512 |
results.get('summary_plot'),
|
513 |
+
# CF Calib
|
514 |
+
results.get('cf_total_base_table'), results.get('cf_policy_attrs_total'),
|
515 |
+
results.get('cf_cashflow_plot'), results.get('cf_scatter_cashflows_base'),
|
516 |
+
results.get('cf_pv_total_base'), results.get('cf_pv_total_lapse'), results.get('cf_pv_total_mort'),
|
517 |
+
# Attr Calib
|
518 |
+
results.get('attr_total_cf_base'), results.get('attr_policy_attrs_total'),
|
519 |
+
results.get('attr_cashflow_plot'), results.get('attr_scatter_cashflows_base'), results.get('attr_total_pv_base'),
|
520 |
+
# PV Calib
|
521 |
+
results.get('pv_total_cf_base'), results.get('pv_policy_attrs_total'),
|
522 |
+
results.get('pv_cashflow_plot'), results.get('pv_scatter_pvs_base'),
|
523 |
+
results.get('pv_total_pv_base'), results.get('pv_total_pv_lapse'), results.get('pv_total_pv_mort')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
]
|
525 |
+
|
526 |
analyze_btn.click(
|
527 |
+
handle_analysis,
|
528 |
+
inputs=[cashflow_base_input, cashflow_lapse_input, cashflow_mort_input,
|
529 |
+
policy_data_input, pv_base_input, pv_lapse_input, pv_mort_input],
|
530 |
+
outputs=get_all_output_components()
|
531 |
+
)
|
532 |
+
|
533 |
+
# --- Action for Load Example Data Button ---
|
534 |
+
def load_example_files():
|
535 |
+
# Check if all example files exist
|
536 |
+
missing_files = [fp for fp in EXAMPLE_FILES.values() if not os.path.exists(fp)]
|
537 |
+
if missing_files:
|
538 |
+
gr.Error(f"Missing example data files in '{EXAMPLE_DATA_DIR}': {', '.join(missing_files)}. Please ensure they exist.")
|
539 |
+
return [None] * 7 # Return Nones for all file inputs
|
540 |
+
|
541 |
+
gr.Info("Example data paths loaded. Click 'Analyze Dataset'.")
|
542 |
+
return [
|
543 |
+
EXAMPLE_FILES["cashflow_base"], EXAMPLE_FILES["cashflow_lapse"], EXAMPLE_FILES["cashflow_mort"],
|
544 |
+
EXAMPLE_FILES["policy_data"], EXAMPLE_FILES["pv_base"], EXAMPLE_FILES["pv_lapse"],
|
545 |
+
EXAMPLE_FILES["pv_mort"]
|
546 |
]
|
547 |
+
|
548 |
+
load_example_btn.click(
|
549 |
+
load_example_files,
|
550 |
+
inputs=[],
|
551 |
+
outputs=[cashflow_base_input, cashflow_lapse_input, cashflow_mort_input,
|
552 |
+
policy_data_input, pv_base_input, pv_lapse_input, pv_mort_input]
|
553 |
)
|
554 |
+
|
555 |
return demo
|
556 |
|
557 |
if __name__ == "__main__":
|
558 |
+
# Create the eg_data directory if it doesn't exist (for testing, user should create it with files)
|
559 |
+
if not os.path.exists(EXAMPLE_DATA_DIR):
|
560 |
+
os.makedirs(EXAMPLE_DATA_DIR)
|
561 |
+
print(f"Created directory '{EXAMPLE_DATA_DIR}'. Please place example Excel files there.")
|
562 |
+
# You might want to add dummy files here for basic testing if the real files aren't present
|
563 |
+
# For example:
|
564 |
+
# with open(os.path.join(EXAMPLE_DATA_DIR, "cashflows_seriatim_10K.xlsx"), "w") as f: f.write("")
|
565 |
+
# ... and so on for other files, but they would be empty and cause errors in pd.read_excel.
|
566 |
+
# It's better to instruct the user to add the actual files.
|
567 |
+
print(f"Expected files in '{EXAMPLE_DATA_DIR}': {list(EXAMPLE_FILES.values())}")
|
568 |
+
|
569 |
+
|
570 |
+
demo_app = create_interface()
|
571 |
+
demo_app.launch()
|