|
import streamlit as st |
|
from groq import Groq |
|
import json |
|
import os |
|
from io import BytesIO |
|
from markdown import markdown |
|
from weasyprint import HTML, CSS |
|
from dotenv import load_dotenv |
|
import fitz |
|
import faiss |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
import tempfile |
|
|
|
|
|
load_dotenv() |
|
|
|
GROQ_API_KEY = os.getenv("GROQ_API_KEY", None) |
|
|
|
if "api_key" not in st.session_state: |
|
st.session_state.api_key = GROQ_API_KEY |
|
|
|
if "groq" not in st.session_state: |
|
if GROQ_API_KEY: |
|
st.session_state.groq = Groq() |
|
|
|
|
|
class GenerationStatistics: |
|
def __init__( |
|
self, |
|
input_time=0, |
|
output_time=0, |
|
input_tokens=0, |
|
output_tokens=0, |
|
total_time=0, |
|
model_name="mixtral-8x7b-32768", |
|
): |
|
self.input_time = input_time |
|
self.output_time = output_time |
|
self.input_tokens = input_tokens |
|
self.output_tokens = output_tokens |
|
self.total_time = ( |
|
total_time |
|
) |
|
self.model_name = model_name |
|
|
|
def get_input_speed(self): |
|
""" |
|
Tokens per second calculation for input |
|
""" |
|
if self.input_time != 0: |
|
return self.input_tokens / self.input_time |
|
else: |
|
return 0 |
|
|
|
def get_output_speed(self): |
|
""" |
|
Tokens per second calculation for output |
|
""" |
|
if self.output_time != 0: |
|
return self.output_tokens / self.output_time |
|
else: |
|
return 0 |
|
|
|
def add(self, other): |
|
""" |
|
Add statistics from another GenerationStatistics object to this one. |
|
""" |
|
if not isinstance(other, GenerationStatistics): |
|
raise TypeError("Can only add GenerationStatistics objects") |
|
|
|
self.input_time += other.input_time |
|
self.output_time += other.output_time |
|
self.input_tokens += other.input_tokens |
|
self.output_tokens += other.output_tokens |
|
self.total_time += other.total_time |
|
|
|
def __str__(self): |
|
return ( |
|
f"\n## {self.get_output_speed():.2f} T/s ⚡\nRound trip time: {self.total_time:.2f}s Model: {self.model_name}\n\n" |
|
f"| Metric | Input | Output | Total |\n" |
|
f"|-----------------|----------------|-----------------|----------------|\n" |
|
f"| Speed (T/s) | {self.get_input_speed():.2f} | {self.get_output_speed():.2f} | {(self.input_tokens + self.output_tokens) / self.total_time if self.total_time != 0 else 0:.2f} |\n" |
|
f"| Tokens | {self.input_tokens} | {self.output_tokens} | {self.input_tokens + self.output_tokens} |\n" |
|
f"| Inference Time (s) | {self.input_time:.2f} | {self.output_time:.2f} | {self.total_time:.2f} |" |
|
) |
|
|
|
|
|
class ResearchPaper: |
|
def __init__(self, paper_title, structure): |
|
self.paper_title = paper_title |
|
self.structure = structure |
|
self.contents = {title: "" for title in self.flatten_structure(structure)} |
|
self.placeholders = {title: st.empty() for title in self.flatten_structure(structure)} |
|
st.markdown(f"# {self.paper_title}") |
|
st.markdown("## Generating the following:") |
|
toc_columns = st.columns(4) |
|
self.display_toc(self.structure, toc_columns) |
|
st.markdown("---") |
|
|
|
def flatten_structure(self, structure): |
|
sections = [] |
|
for title, content in structure.items(): |
|
sections.append(title) |
|
if isinstance(content, dict): |
|
sections.extend(self.flatten_structure(content)) |
|
return sections |
|
|
|
def update_content(self, title, new_content): |
|
try: |
|
self.contents[title] += new_content |
|
self.display_content(title) |
|
except TypeError as e: |
|
pass |
|
|
|
def display_content(self, title): |
|
if self.contents[title].strip(): |
|
self.placeholders[title].markdown(f"## {title}\n{self.contents[title]}") |
|
|
|
def display_structure(self, structure=None, level=1): |
|
if structure is None: |
|
structure = self.structure |
|
|
|
for title, content in structure.items(): |
|
if self.contents[title].strip(): |
|
st.markdown(f"{'#' * level} {title}") |
|
self.placeholders[title].markdown(self.contents[title]) |
|
if isinstance(content, dict): |
|
self.display_structure(content, level + 1) |
|
|
|
def display_toc(self, structure, columns, level=1, col_index=0): |
|
for title, content in structure.items(): |
|
with columns[col_index % len(columns)]: |
|
st.markdown(f"{' ' * (level-1) * 2}- {title}") |
|
col_index += 1 |
|
if isinstance(content, dict): |
|
col_index = self.display_toc(content, columns, level + 1, col_index) |
|
return col_index |
|
|
|
def get_markdown_content(self, structure=None, level=1): |
|
""" |
|
Returns the markdown styled pure string with the contents. |
|
""" |
|
if structure is None: |
|
structure = self.structure |
|
|
|
if level==1: |
|
markdown_content = f"# {self.paper_title}\n\n" |
|
|
|
else: |
|
markdown_content = "" |
|
|
|
for title, content in structure.items(): |
|
if self.contents[title].strip(): |
|
markdown_content += f"{'#' * level} {title}\n{self.contents[title]}\n\n" |
|
if isinstance(content, dict): |
|
markdown_content += self.get_markdown_content(content, level + 1) |
|
return markdown_content |
|
|
|
|
|
def create_markdown_file(content: str) -> BytesIO: |
|
""" |
|
Create a Markdown file from the provided content. |
|
""" |
|
markdown_file = BytesIO() |
|
markdown_file.write(content.encode("utf-8")) |
|
markdown_file.seek(0) |
|
return markdown_file |
|
|
|
|
|
def create_pdf_file(content: str) -> str: |
|
""" |
|
Create a PDF file from the provided Markdown content. |
|
Converts Markdown to styled HTML, then HTML to PDF. |
|
""" |
|
try: |
|
html_content = markdown(content, extensions=["extra", "codehilite"]) |
|
|
|
styled_html = f""" |
|
<html> |
|
<head> |
|
<style> |
|
@page {{ |
|
margin: 2cm; |
|
}} |
|
body {{ |
|
font-family: Arial, sans-serif; |
|
line-height: 1.6; |
|
font-size: 12pt; |
|
}} |
|
h1, h2, h3, h4, h5, h6 {{ |
|
color: #333366; |
|
margin-top: 1em; |
|
margin-bottom: 0.5em; |
|
}} |
|
p {{ |
|
margin-bottom: 0.5em; |
|
}} |
|
code {{ |
|
background-color: #f4f4f4; |
|
padding: 2px 4px; |
|
border-radius: 4px; |
|
font-family: monospace; |
|
font-size: 0.9em; |
|
}} |
|
pre {{ |
|
background-color: #f4f4f4; |
|
padding: 1em; |
|
border-radius: 4px; |
|
white-space: pre-wrap; |
|
word-wrap: break-word; |
|
}} |
|
blockquote {{ |
|
border-left: 4px solid #ccc; |
|
padding-left: 1em; |
|
margin-left: 0; |
|
font-style: italic; |
|
}} |
|
table {{ |
|
border-collapse: collapse; |
|
width: 100%; |
|
margin-bottom: 1em; |
|
}} |
|
th, td {{ |
|
border: 1px solid #ddd; |
|
padding: 8px; |
|
text-align: left; |
|
}} |
|
th {{ |
|
background-color: #f2f2f2; |
|
}} |
|
input, textarea {{ |
|
border-color: #4A90E2 !important; |
|
}} |
|
</style> |
|
</head> |
|
<body> |
|
{html_content} |
|
</body> |
|
</html> |
|
""" |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: |
|
HTML(string=styled_html).write_pdf(tmp_file.name) |
|
tmp_file.seek(0) |
|
return tmp_file.name |
|
except Exception as e: |
|
st.error(f"Error creating PDF file: {e}") |
|
return None |
|
|
|
def generate_paper_title(prompt: str, language: str): |
|
""" |
|
Generate a research paper title using AI. |
|
""" |
|
if language == "Arabic": |
|
prompt_language = "Arabic" |
|
else: |
|
prompt_language = "English" |
|
|
|
completion = st.session_state.groq.chat.completions.create( |
|
model="mixtral-8x7b-32768", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": f"Generate suitable research paper titles for the provided topics in {prompt_language}. There is only one generated paper title! Don't give any explanation or add any symbols, just write the title of the paper. The requirement for this title is that it must be between 7 and 25 words long, and it must be attractive enough!" |
|
}, |
|
{ |
|
"role": "user", |
|
"content": f"Generate a research paper title for the following topic in {prompt_language}. There is only one generated paper title! Don't give any explanation or add any symbols, just write the title of the paper. The requirement for this title is that it must be at least 7 words and 25 words long, and it must be attractive enough:\n\n{prompt}" |
|
} |
|
], |
|
temperature=0.7, |
|
max_tokens=100, |
|
top_p=1, |
|
stream=False, |
|
stop=None, |
|
) |
|
|
|
return completion.choices[0].message.content.strip() |
|
|
|
def generate_paper_structure(prompt: str, language: str): |
|
""" |
|
Returns research paper structure content as well as total tokens and total time for generation. |
|
""" |
|
if language == "Arabic": |
|
prompt_language = "Arabic" |
|
else: |
|
prompt_language = "English" |
|
|
|
completion = st.session_state.groq.chat.completions.create( |
|
model="mixtral-8x7b-32768", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": f'Write in JSON format in {prompt_language}:\n\n{{"Title of section goes here":"Description of section goes here",\n"Title of section goes here":{{"Title of section goes here":"Description of section goes here","Title of section goes here":"Description of section goes here","Title of section goes here":"Description of section goes here"}}}}', |
|
}, |
|
{ |
|
"role": "user", |
|
"content": f"Compose a detailed and comprehensive structure for an extensive research paper exceeding 300 pages. The structure should exclude sections such as the introduction and conclusion (including the foreword, author's note, and summary). The structure should be developed in {prompt_language} and should adhere closely to the following subject and additional instructions. Ensure the structure is well-organized and covers all necessary aspects of the topic comprehensively.\n\nالموضوع: {prompt}\n\nتعليمات إضافية: {additional_instructions}", |
|
} |
|
|
|
], |
|
temperature=0.3, |
|
max_tokens=8000, |
|
top_p=1, |
|
stream=False, |
|
response_format={"type": "json_object"}, |
|
stop=None, |
|
) |
|
|
|
usage = completion.usage |
|
statistics_to_return = GenerationStatistics( |
|
input_time=usage.prompt_time, |
|
output_time=usage.completion_time, |
|
input_tokens=usage.prompt_tokens, |
|
output_tokens=usage.completion_tokens, |
|
total_time=usage.total_time, |
|
model_name="mixtral-8x7b-32768", |
|
) |
|
|
|
return statistics_to_return, completion.choices[0].message.content |
|
|
|
def generate_section(prompt: str, additional_instructions: str, language: str): |
|
if language == "Arabic": |
|
prompt_language = "Arabic" |
|
else: |
|
prompt_language = "English" |
|
|
|
stream = st.session_state.groq.chat.completions.create( |
|
model="mixtral-8x7b-32768", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": f"You are an expert writer. Generate a long, comprehensive, structured chapter for the section provided in {prompt_language}. If additional instructions are provided, consider them very important. Only output the content.", |
|
}, |
|
{ |
|
"role": "user", |
|
"content": f""" |
|
Generate a long, comprehensive, and well-structured chapter in {prompt_language}. Please adhere to the following guidelines: |
|
|
|
1. **Section Title**: {prompt} |
|
2. **Additional Instructions**: {additional_instructions} |
|
|
|
### Guidelines: |
|
- Ensure the content is detailed and informative. |
|
- Maintain a logical flow and clear structure throughout the chapter. |
|
- Use appropriate headings and subheadings to organize the content. |
|
- Provide examples, case studies, or real-life applications where relevant. |
|
- Cite any external sources or references properly. |
|
- Keep the language formal and academic. |
|
|
|
### Structure: |
|
- **Introduction**: Briefly introduce the topic and its importance. |
|
- **Main Body**: |
|
- Present key concepts and ideas. |
|
- Discuss various perspectives and arguments. |
|
- Include relevant data, statistics, and evidence. |
|
- **Conclusion**: Summarize the key points and provide any final insights or recommendations. |
|
|
|
Please make sure the content is engaging and free of grammatical errors. |
|
""" |
|
}, |
|
], |
|
temperature=0.3, |
|
max_tokens=8000, |
|
top_p=1, |
|
stream=True, |
|
stop=None, |
|
) |
|
|
|
for chunk in stream: |
|
tokens = chunk.choices[0].delta.content |
|
if tokens: |
|
yield tokens |
|
if x_groq := chunk.x_groq: |
|
if not x_groq.usage: |
|
continue |
|
usage = x_groq.usage |
|
statistics_to_return = GenerationStatistics( |
|
input_time=usage.prompt_time, |
|
output_time=usage.completion_time, |
|
input_tokens=usage.prompt_tokens, |
|
output_tokens=usage.completion_tokens, |
|
total_time=usage.total_time, |
|
model_name="mixtral-8x7b-32768", |
|
) |
|
yield statistics_to_return |
|
|
|
def extract_text_from_pdf(file): |
|
""" |
|
Extracts text from the provided PDF file. |
|
""" |
|
document = fitz.open(stream=file.read(), filetype="pdf") |
|
text = "" |
|
for page_num in range(len(document)): |
|
page = document.load_page(page_num) |
|
text += page.get_text("text") |
|
return text |
|
|
|
def generate_research_citations(extracted_texts, language: str): |
|
""" |
|
Generate proper citations for the extracted texts. |
|
""" |
|
citations = [] |
|
for text in extracted_texts: |
|
if language == "Arabic": |
|
prompt_language = "Arabic" |
|
else: |
|
prompt_language = "English" |
|
|
|
citation = st.session_state.groq.chat.completions.create( |
|
model="mixtral-8x7b-32768", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": f"Generate proper citations in APA format for the given extracted text from a research paper in {prompt_language}." |
|
}, |
|
{ |
|
"role": "user", |
|
"content": f"Generate a citation for the following text in {prompt_language}:\n\n{text}" |
|
} |
|
], |
|
temperature=0.7, |
|
max_tokens=100, |
|
top_p=1, |
|
stream=False, |
|
stop=None, |
|
) |
|
citations.append(citation.choices[0].message.content.strip()) |
|
return citations |
|
|
|
def preprocess_texts(texts): |
|
""" |
|
Preprocess texts for indexing. |
|
""" |
|
preprocessed_texts = [] |
|
for text in texts: |
|
|
|
chunks = text.split("\n\n") |
|
preprocessed_texts.extend(chunks) |
|
return preprocessed_texts |
|
|
|
def index_texts(texts): |
|
""" |
|
Index texts using FAISS. |
|
""" |
|
vectorizer = TfidfVectorizer() |
|
vectors = vectorizer.fit_transform(texts).toarray() |
|
index = faiss.IndexFlatL2(vectors.shape[1]) |
|
index.add(vectors) |
|
return index, vectorizer |
|
|
|
def retrieve_passages(query, index, vectorizer, texts, top_k=5): |
|
""" |
|
Retrieve top-k passages relevant to the query. |
|
""" |
|
query_vector = vectorizer.transform([query]).toarray() |
|
distances, indices = index.search(query_vector, top_k) |
|
retrieved_passages = [texts[i] for i in indices[0]] |
|
return retrieved_passages |
|
|
|
def split_text(text, max_tokens=1500): |
|
""" |
|
Splits text into smaller chunks to avoid exceeding the API's size limit. |
|
""" |
|
words = text.split() |
|
chunks = [] |
|
current_chunk = [] |
|
|
|
for word in words: |
|
current_chunk.append(word) |
|
if len(current_chunk) >= max_tokens: |
|
chunks.append(' '.join(current_chunk)) |
|
current_chunk = [] |
|
|
|
if current_chunk: |
|
chunks.append(' '.join(current_chunk)) |
|
|
|
return chunks |
|
|
|
|
|
if "button_disabled" not in st.session_state: |
|
st.session_state.button_disabled = False |
|
|
|
if "button_text" not in st.session_state: |
|
st.session_state.button_text = "Generate" |
|
|
|
if "statistics_text" not in st.session_state: |
|
st.session_state.statistics_text = "" |
|
|
|
if 'paper_title' not in st.session_state: |
|
st.session_state.paper_title = "" |
|
|
|
if 'uploaded_pdfs' not in st.session_state: |
|
st.session_state.uploaded_pdfs = [] |
|
|
|
if 'extracted_texts' not in st.session_state: |
|
st.session_state.extracted_texts = [] |
|
|
|
if 'citations' not in st.session_state: |
|
st.session_state.citations = [] |
|
|
|
if 'index' not in st.session_state: |
|
st.session_state.index = None |
|
|
|
if 'vectorizer' not in st.session_state: |
|
st.session_state.vectorizer = None |
|
|
|
if 'preprocessed_texts' not in st.session_state: |
|
st.session_state.preprocessed_texts = [] |
|
|
|
st.write( |
|
""" |
|
# ResearchPaper: Write full research papers using AI |
|
""" |
|
) |
|
|
|
def disable(): |
|
st.session_state.button_disabled = True |
|
|
|
def enable(): |
|
st.session_state.button_disabled = False |
|
|
|
def empty_st(): |
|
st.empty() |
|
|
|
try: |
|
if st.button("End Generation and Download Paper"): |
|
if "paper" in st.session_state: |
|
|
|
markdown_file = create_markdown_file( |
|
st.session_state.paper.get_markdown_content() |
|
) |
|
st.download_button( |
|
label="Download Text", |
|
data=markdown_file, |
|
file_name=f'{st.session_state.paper_title}.txt', |
|
mime='text/plain' |
|
) |
|
|
|
|
|
pdf_file_path = create_pdf_file(st.session_state.paper.get_markdown_content()) |
|
if pdf_file_path: |
|
with open(pdf_file_path, "rb") as pdf_file: |
|
pdf_data = pdf_file.read() |
|
st.download_button( |
|
label="Download PDF", |
|
data=pdf_data, |
|
file_name=f'{st.session_state.paper_title}.pdf', |
|
mime='application/pdf' |
|
) |
|
else: |
|
st.error("Failed to generate the PDF file.") |
|
else: |
|
raise ValueError("Please generate content first before downloading the paper.") |
|
|
|
with st.form("groqform"): |
|
if not GROQ_API_KEY: |
|
groq_input_key = st.text_input( |
|
"Enter your Groq API Key (gsk_yA...):", "", type="password" |
|
) |
|
|
|
topic_text = st.text_input( |
|
"What do you want the research paper to be about?", |
|
value="", |
|
help="Enter the main topic or title of your research paper", |
|
) |
|
|
|
additional_instructions = st.text_area( |
|
"Additional Instructions (optional)", |
|
help="Provide any specific guidelines or preferences for the research paper's content", |
|
placeholder="E.g., 'Focus on beginner-friendly content', 'Include case studies', etc.", |
|
value="", |
|
) |
|
|
|
|
|
language = st.selectbox( |
|
"Choose the language for the research paper", |
|
options=["English", "Arabic"], |
|
index=0 |
|
) |
|
|
|
|
|
uploaded_pdfs = st.file_uploader( |
|
"Upload related research PDFs", |
|
type=["pdf"], |
|
accept_multiple_files=True, |
|
help="Upload multiple PDFs that you want to extract information from and cite in the research paper", |
|
) |
|
|
|
if uploaded_pdfs: |
|
for pdf in uploaded_pdfs: |
|
if pdf not in st.session_state.uploaded_pdfs: |
|
st.session_state.uploaded_pdfs.append(pdf) |
|
extracted_text = extract_text_from_pdf(pdf) |
|
st.session_state.extracted_texts.append(extracted_text) |
|
st.success(f"Extracted text from {pdf.name}") |
|
|
|
st.session_state.preprocessed_texts = preprocess_texts(st.session_state.extracted_texts) |
|
|
|
|
|
if len(st.session_state.preprocessed_texts) > 0: |
|
st.session_state.index, st.session_state.vectorizer = index_texts(st.session_state.preprocessed_texts) |
|
else: |
|
st.error("Uploaded documents do not contain enough content for processing. Please upload different documents.") |
|
|
|
|
|
submitted = st.form_submit_button( |
|
st.session_state.button_text, |
|
on_click=disable, |
|
disabled=st.session_state.button_disabled, |
|
) |
|
|
|
|
|
placeholder = st.empty() |
|
|
|
def display_statistics(): |
|
with placeholder.container(): |
|
if st.session_state.statistics_text: |
|
if ( |
|
"Generating structure in background" |
|
not in st.session_state.statistics_text |
|
): |
|
st.markdown( |
|
st.session_state.statistics_text + "\n\n---\n" |
|
) |
|
else: |
|
st.markdown(st.session_state.statistics_text) |
|
else: |
|
placeholder.empty() |
|
|
|
if submitted: |
|
if len(topic_text) < 10: |
|
raise ValueError("Research paper topic must be at least 10 characters long") |
|
|
|
st.session_state.button_disabled = True |
|
st.session_state.statistics_text = "Generating research paper title and structure in background...." |
|
display_statistics() |
|
|
|
if not GROQ_API_KEY: |
|
st.session_state.groq = Groq(api_key=groq_input_key) |
|
|
|
large_model_generation_statistics, paper_structure = generate_paper_structure( |
|
topic_text, |
|
language |
|
) |
|
|
|
st.session_state.paper_title = generate_paper_title(topic_text, language) |
|
st.write(f"## {st.session_state.paper_title}") |
|
|
|
large_model_generation_statistics, paper_structure = generate_paper_structure(topic_text, language) |
|
|
|
total_generation_statistics = GenerationStatistics( |
|
model_name="mixtral-8x7b-32768" |
|
) |
|
|
|
try: |
|
paper_structure_json = json.loads(paper_structure) |
|
paper = ResearchPaper(st.session_state.paper_title, paper_structure_json) |
|
|
|
if 'paper' not in st.session_state: |
|
st.session_state.paper = paper |
|
|
|
|
|
print(json.dumps(paper_structure_json, indent=2)) |
|
|
|
st.session_state.paper.display_structure() |
|
|
|
def stream_section_content(sections): |
|
for title, content in sections.items(): |
|
if isinstance(content, str): |
|
if st.session_state.index and st.session_state.vectorizer: |
|
|
|
retrieved_passages = retrieve_passages( |
|
title + ": " + content, |
|
st.session_state.index, |
|
st.session_state.vectorizer, |
|
st.session_state.preprocessed_texts |
|
) |
|
context = "\n\n".join(retrieved_passages) |
|
prompt_with_context = title + ": " + content + "\n\n" + context |
|
else: |
|
prompt_with_context = title + ": " + content |
|
|
|
|
|
chunks = split_text(prompt_with_context) |
|
|
|
for chunk in chunks: |
|
content_stream = generate_section( |
|
chunk, additional_instructions, language |
|
) |
|
for content_chunk in content_stream: |
|
|
|
if isinstance(content_chunk, GenerationStatistics): |
|
total_generation_statistics.add(content_chunk) |
|
|
|
st.session_state.statistics_text = str( |
|
total_generation_statistics |
|
) |
|
display_statistics() |
|
|
|
elif content_chunk: |
|
st.session_state.paper.update_content(title, content_chunk) |
|
elif isinstance(content, dict): |
|
stream_section_content(content) |
|
|
|
stream_section_content(paper_structure_json) |
|
|
|
|
|
if st.session_state.extracted_texts: |
|
citations = generate_research_citations(st.session_state.extracted_texts, language) |
|
st.session_state.citations = citations |
|
st.session_state.paper.update_content( |
|
"References", "\n\n".join(st.session_state.citations) |
|
) |
|
|
|
except json.JSONDecodeError: |
|
st.error("Failed to decode the research paper structure. Please try again.") |
|
|
|
enable() |
|
|
|
except Exception as e: |
|
st.session_state.button_disabled = False |
|
st.error(e) |
|
|
|
if st.button("Clear"): |
|
st.rerun() |
|
|