File size: 27,705 Bytes
40ba08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import streamlit as st
from groq import Groq
import json
import os
from io import BytesIO
from markdown import markdown
from weasyprint import HTML, CSS
from dotenv import load_dotenv
import fitz  # PyMuPDF
import faiss
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import tempfile

# Load .env file to environment
load_dotenv()

GROQ_API_KEY = os.getenv("GROQ_API_KEY", None)

if "api_key" not in st.session_state:
    st.session_state.api_key = GROQ_API_KEY

if "groq" not in st.session_state:
    if GROQ_API_KEY:
        st.session_state.groq = Groq()


class GenerationStatistics:
    def __init__(
        self,
        input_time=0,
        output_time=0,
        input_tokens=0,
        output_tokens=0,
        total_time=0,
        model_name="mixtral-8x7b-32768",
    ):
        self.input_time = input_time
        self.output_time = output_time
        self.input_tokens = input_tokens
        self.output_tokens = output_tokens
        self.total_time = (
            total_time  # Sum of queue, prompt (input), and completion (output) times
        )
        self.model_name = model_name

    def get_input_speed(self):
        """
        Tokens per second calculation for input
        """
        if self.input_time != 0:
            return self.input_tokens / self.input_time
        else:
            return 0

    def get_output_speed(self):
        """
        Tokens per second calculation for output
        """
        if self.output_time != 0:
            return self.output_tokens / self.output_time
        else:
            return 0

    def add(self, other):
        """
        Add statistics from another GenerationStatistics object to this one.
        """
        if not isinstance(other, GenerationStatistics):
            raise TypeError("Can only add GenerationStatistics objects")

        self.input_time += other.input_time
        self.output_time += other.output_time
        self.input_tokens += other.input_tokens
        self.output_tokens += other.output_tokens
        self.total_time += other.total_time

    def __str__(self):
        return (
            f"\n## {self.get_output_speed():.2f} T/s ⚡\nRound trip time: {self.total_time:.2f}s  Model: {self.model_name}\n\n"
            f"| Metric          | Input          | Output          | Total          |\n"
            f"|-----------------|----------------|-----------------|----------------|\n"
            f"| Speed (T/s)     | {self.get_input_speed():.2f}            | {self.get_output_speed():.2f}            | {(self.input_tokens + self.output_tokens) / self.total_time if self.total_time != 0 else 0:.2f}            |\n"
            f"| Tokens          | {self.input_tokens}            | {self.output_tokens}            | {self.input_tokens + self.output_tokens}            |\n"
            f"| Inference Time (s) | {self.input_time:.2f}            | {self.output_time:.2f}            | {self.total_time:.2f}            |"
        )


class ResearchPaper:
    def __init__(self, paper_title, structure):
        self.paper_title = paper_title
        self.structure = structure
        self.contents = {title: "" for title in self.flatten_structure(structure)}
        self.placeholders = {title: st.empty() for title in self.flatten_structure(structure)}
        st.markdown(f"# {self.paper_title}")
        st.markdown("## Generating the following:")
        toc_columns = st.columns(4)
        self.display_toc(self.structure, toc_columns)
        st.markdown("---")

    def flatten_structure(self, structure):
        sections = []
        for title, content in structure.items():
            sections.append(title)
            if isinstance(content, dict):
                sections.extend(self.flatten_structure(content))
        return sections

    def update_content(self, title, new_content):
        try:
            self.contents[title] += new_content
            self.display_content(title)
        except TypeError as e:
            pass

    def display_content(self, title):
        if self.contents[title].strip():
            self.placeholders[title].markdown(f"## {title}\n{self.contents[title]}")

    def display_structure(self, structure=None, level=1):
        if structure is None:
            structure = self.structure
            
        for title, content in structure.items():
            if self.contents[title].strip():  # Only display title if there is content
                st.markdown(f"{'#' * level} {title}")
                self.placeholders[title].markdown(self.contents[title])
            if isinstance(content, dict):
                self.display_structure(content, level + 1)

    def display_toc(self, structure, columns, level=1, col_index=0):
        for title, content in structure.items():
            with columns[col_index % len(columns)]:
                st.markdown(f"{' ' * (level-1) * 2}- {title}")
            col_index += 1
            if isinstance(content, dict):
                col_index = self.display_toc(content, columns, level + 1, col_index)
        return col_index

    def get_markdown_content(self, structure=None, level=1):
        """
        Returns the markdown styled pure string with the contents.
        """
        if structure is None:
            structure = self.structure
        
        if level==1:
            markdown_content = f"# {self.paper_title}\n\n"
            
        else:
            markdown_content = ""
        
        for title, content in structure.items():
            if self.contents[title].strip():  # Only include title if there is content
                markdown_content += f"{'#' * level} {title}\n{self.contents[title]}\n\n"
            if isinstance(content, dict):
                markdown_content += self.get_markdown_content(content, level + 1)
        return markdown_content


def create_markdown_file(content: str) -> BytesIO:
    """
    Create a Markdown file from the provided content.
    """
    markdown_file = BytesIO()
    markdown_file.write(content.encode("utf-8"))
    markdown_file.seek(0)
    return markdown_file


def create_pdf_file(content: str) -> str:
    """
    Create a PDF file from the provided Markdown content.
    Converts Markdown to styled HTML, then HTML to PDF.
    """
    try:
        html_content = markdown(content, extensions=["extra", "codehilite"])

        styled_html = f"""
        <html>
            <head>
                <style>
                    @page {{
                        margin: 2cm;
                    }}
                    body {{
                        font-family: Arial, sans-serif;
                        line-height: 1.6;
                        font-size: 12pt;
                    }}
                    h1, h2, h3, h4, h5, h6 {{
                        color: #333366;
                        margin-top: 1em;
                        margin-bottom: 0.5em;
                    }}
                    p {{
                        margin-bottom: 0.5em;
                    }}
                    code {{
                        background-color: #f4f4f4;
                        padding: 2px 4px;
                        border-radius: 4px;
                        font-family: monospace;
                        font-size: 0.9em;
                    }}
                    pre {{
                        background-color: #f4f4f4;
                        padding: 1em;
                        border-radius: 4px;
                        white-space: pre-wrap;
                        word-wrap: break-word;
                    }}
                    blockquote {{
                        border-left: 4px solid #ccc;
                        padding-left: 1em;
                        margin-left: 0;
                        font-style: italic;
                    }}
                    table {{
                        border-collapse: collapse;
                        width: 100%;
                        margin-bottom: 1em;
                    }}
                    th, td {{
                        border: 1px solid #ddd;
                        padding: 8px;
                        text-align: left;
                    }}
                    th {{
                        background-color: #f2f2f2;
                    }}
                    input, textarea {{
                        border-color: #4A90E2 !important;
                    }}
                </style>
            </head>
            <body>
                {html_content}
            </body>
        </html>
        """

        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
            HTML(string=styled_html).write_pdf(tmp_file.name)
            tmp_file.seek(0)
            return tmp_file.name
    except Exception as e:
        st.error(f"Error creating PDF file: {e}")
        return None

def generate_paper_title(prompt: str, language: str):
    """
    Generate a research paper title using AI.
    """
    if language == "Arabic":
        prompt_language = "Arabic"
    else:
        prompt_language = "English"
        
    completion = st.session_state.groq.chat.completions.create(
        model="mixtral-8x7b-32768",
        messages=[
            {
                "role": "system",
                "content": f"Generate suitable research paper titles for the provided topics in {prompt_language}. There is only one generated paper title! Don't give any explanation or add any symbols, just write the title of the paper. The requirement for this title is that it must be between 7 and 25 words long, and it must be attractive enough!"
            },
            {
                "role": "user",
                "content": f"Generate a research paper title for the following topic in {prompt_language}. There is only one generated paper title! Don't give any explanation or add any symbols, just write the title of the paper. The requirement for this title is that it must be at least 7 words and 25 words long, and it must be attractive enough:\n\n{prompt}"
            }
        ],
        temperature=0.7,
        max_tokens=100,
        top_p=1,
        stream=False,
        stop=None,
    )

    return completion.choices[0].message.content.strip()

def generate_paper_structure(prompt: str, language: str):
    """
    Returns research paper structure content as well as total tokens and total time for generation.
    """
    if language == "Arabic":
        prompt_language = "Arabic"
    else:
        prompt_language = "English"
        
    completion = st.session_state.groq.chat.completions.create(
        model="mixtral-8x7b-32768",
        messages=[
            {
                "role": "system",
                "content": f'Write in JSON format in {prompt_language}:\n\n{{"Title of section goes here":"Description of section goes here",\n"Title of section goes here":{{"Title of section goes here":"Description of section goes here","Title of section goes here":"Description of section goes here","Title of section goes here":"Description of section goes here"}}}}',
            },
            {
                "role": "user",
                "content": f"Compose a detailed and comprehensive structure for an extensive research paper exceeding 300 pages. The structure should exclude sections such as the introduction and conclusion (including the foreword, author's note, and summary). The structure should be developed in {prompt_language} and should adhere closely to the following subject and additional instructions. Ensure the structure is well-organized and covers all necessary aspects of the topic comprehensively.\n\nالموضوع: {prompt}\n\nتعليمات إضافية: {additional_instructions}",
            }

        ],
        temperature=0.3,
        max_tokens=8000,
        top_p=1,
        stream=False,
        response_format={"type": "json_object"},
        stop=None,
    )

    usage = completion.usage
    statistics_to_return = GenerationStatistics(
        input_time=usage.prompt_time,
        output_time=usage.completion_time,
        input_tokens=usage.prompt_tokens,
        output_tokens=usage.completion_tokens,
        total_time=usage.total_time,
        model_name="mixtral-8x7b-32768",
    )

    return statistics_to_return, completion.choices[0].message.content

def generate_section(prompt: str, additional_instructions: str, language: str):
    if language == "Arabic":
        prompt_language = "Arabic"
    else:
        prompt_language = "English"
        
    stream = st.session_state.groq.chat.completions.create(
        model="mixtral-8x7b-32768",
        messages=[
            {
                "role": "system",
                "content": f"You are an expert writer. Generate a long, comprehensive, structured chapter for the section provided in {prompt_language}. If additional instructions are provided, consider them very important. Only output the content.",
            },
            {
                "role": "user",
                "content": f"""
            Generate a long, comprehensive, and well-structured chapter in {prompt_language}. Please adhere to the following guidelines:

            1. **Section Title**: {prompt}
            2. **Additional Instructions**: {additional_instructions}

            ### Guidelines:
            - Ensure the content is detailed and informative.
            - Maintain a logical flow and clear structure throughout the chapter.
            - Use appropriate headings and subheadings to organize the content.
            - Provide examples, case studies, or real-life applications where relevant.
            - Cite any external sources or references properly.
            - Keep the language formal and academic.

            ### Structure:
            - **Introduction**: Briefly introduce the topic and its importance.
            - **Main Body**: 
            - Present key concepts and ideas.
            - Discuss various perspectives and arguments.
            - Include relevant data, statistics, and evidence.
            - **Conclusion**: Summarize the key points and provide any final insights or recommendations.

            Please make sure the content is engaging and free of grammatical errors.
            """
            },
        ],
        temperature=0.3,
        max_tokens=8000,
        top_p=1,
        stream=True,
        stop=None,
    )

    for chunk in stream:
        tokens = chunk.choices[0].delta.content
        if tokens:
            yield tokens
        if x_groq := chunk.x_groq:
            if not x_groq.usage:
                continue
            usage = x_groq.usage
            statistics_to_return = GenerationStatistics(
                input_time=usage.prompt_time,
                output_time=usage.completion_time,
                input_tokens=usage.prompt_tokens,
                output_tokens=usage.completion_tokens,
                total_time=usage.total_time,
                model_name="mixtral-8x7b-32768",
            )
            yield statistics_to_return

def extract_text_from_pdf(file):
    """
    Extracts text from the provided PDF file.
    """
    document = fitz.open(stream=file.read(), filetype="pdf")
    text = ""
    for page_num in range(len(document)):
        page = document.load_page(page_num)
        text += page.get_text("text")
    return text

def generate_research_citations(extracted_texts, language: str):
    """
    Generate proper citations for the extracted texts.
    """
    citations = []
    for text in extracted_texts:
        if language == "Arabic":
            prompt_language = "Arabic"
        else:
            prompt_language = "English"
            
        citation = st.session_state.groq.chat.completions.create(
            model="mixtral-8x7b-32768",
            messages=[
                {
                    "role": "system",
                    "content": f"Generate proper citations in APA format for the given extracted text from a research paper in {prompt_language}."
                },
                {
                    "role": "user",
                    "content": f"Generate a citation for the following text in {prompt_language}:\n\n{text}"
                }
            ],
            temperature=0.7,
            max_tokens=100,
            top_p=1,
            stream=False,
            stop=None,
        )
        citations.append(citation.choices[0].message.content.strip())
    return citations

def preprocess_texts(texts):
    """
    Preprocess texts for indexing.
    """
    preprocessed_texts = []
    for text in texts:
        # Split text into smaller chunks for indexing
        chunks = text.split("\n\n")
        preprocessed_texts.extend(chunks)
    return preprocessed_texts

def index_texts(texts):
    """
    Index texts using FAISS.
    """
    vectorizer = TfidfVectorizer()
    vectors = vectorizer.fit_transform(texts).toarray()
    index = faiss.IndexFlatL2(vectors.shape[1])
    index.add(vectors)
    return index, vectorizer

def retrieve_passages(query, index, vectorizer, texts, top_k=5):
    """
    Retrieve top-k passages relevant to the query.
    """
    query_vector = vectorizer.transform([query]).toarray()
    distances, indices = index.search(query_vector, top_k)
    retrieved_passages = [texts[i] for i in indices[0]]
    return retrieved_passages

def split_text(text, max_tokens=1500):
    """
    Splits text into smaller chunks to avoid exceeding the API's size limit.
    """
    words = text.split()
    chunks = []
    current_chunk = []

    for word in words:
        current_chunk.append(word)
        if len(current_chunk) >= max_tokens:
            chunks.append(' '.join(current_chunk))
            current_chunk = []

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks

# Initialize
if "button_disabled" not in st.session_state:
    st.session_state.button_disabled = False

if "button_text" not in st.session_state:
    st.session_state.button_text = "Generate"

if "statistics_text" not in st.session_state:
    st.session_state.statistics_text = ""

if 'paper_title' not in st.session_state:
    st.session_state.paper_title = ""

if 'uploaded_pdfs' not in st.session_state:
    st.session_state.uploaded_pdfs = []

if 'extracted_texts' not in st.session_state:
    st.session_state.extracted_texts = []

if 'citations' not in st.session_state:
    st.session_state.citations = []

if 'index' not in st.session_state:
    st.session_state.index = None

if 'vectorizer' not in st.session_state:
    st.session_state.vectorizer = None

if 'preprocessed_texts' not in st.session_state:
    st.session_state.preprocessed_texts = []

st.write(
    """
# ResearchPaper: Write full research papers using AI
"""
)

def disable():
    st.session_state.button_disabled = True

def enable():
    st.session_state.button_disabled = False

def empty_st():
    st.empty()

try:
    if st.button("End Generation and Download Paper"):
        if "paper" in st.session_state:
            # Create markdown file
            markdown_file = create_markdown_file(
                st.session_state.paper.get_markdown_content()
            )
            st.download_button(
                label="Download Text",
                data=markdown_file,
                file_name=f'{st.session_state.paper_title}.txt',
                mime='text/plain'
            )

            # Create pdf file (styled)
            pdf_file_path = create_pdf_file(st.session_state.paper.get_markdown_content())
            if pdf_file_path:
                with open(pdf_file_path, "rb") as pdf_file:
                    pdf_data = pdf_file.read()
                st.download_button(
                    label="Download PDF",
                    data=pdf_data,
                    file_name=f'{st.session_state.paper_title}.pdf',
                    mime='application/pdf'
                )
            else:
                st.error("Failed to generate the PDF file.")
        else:
            raise ValueError("Please generate content first before downloading the paper.")

    with st.form("groqform"):
        if not GROQ_API_KEY:
            groq_input_key = st.text_input(
                "Enter your Groq API Key (gsk_yA...):", "", type="password"
            )

        topic_text = st.text_input(
            "What do you want the research paper to be about?",
            value="",
            help="Enter the main topic or title of your research paper",
        )

        additional_instructions = st.text_area(
            "Additional Instructions (optional)",
            help="Provide any specific guidelines or preferences for the research paper's content",
            placeholder="E.g., 'Focus on beginner-friendly content', 'Include case studies', etc.",
            value="",
        )

        # Language selection
        language = st.selectbox(
            "Choose the language for the research paper",
            options=["English", "Arabic"],
            index=0
        )

        # Upload PDFs
        uploaded_pdfs = st.file_uploader(
            "Upload related research PDFs",
            type=["pdf"],
            accept_multiple_files=True,
            help="Upload multiple PDFs that you want to extract information from and cite in the research paper",
        )

        if uploaded_pdfs:
            for pdf in uploaded_pdfs:
                if pdf not in st.session_state.uploaded_pdfs:
                    st.session_state.uploaded_pdfs.append(pdf)
                    extracted_text = extract_text_from_pdf(pdf)
                    st.session_state.extracted_texts.append(extracted_text)
                    st.success(f"Extracted text from {pdf.name}")

            st.session_state.preprocessed_texts = preprocess_texts(st.session_state.extracted_texts)
            
            # Ensure there are non-stop words in the texts
            if len(st.session_state.preprocessed_texts) > 0:
                st.session_state.index, st.session_state.vectorizer = index_texts(st.session_state.preprocessed_texts)
            else:
                st.error("Uploaded documents do not contain enough content for processing. Please upload different documents.")

        # Generate button
        submitted = st.form_submit_button(
            st.session_state.button_text,
            on_click=disable,
            disabled=st.session_state.button_disabled,
        )

        # Statistics
        placeholder = st.empty()

        def display_statistics():
            with placeholder.container():
                if st.session_state.statistics_text:
                    if (
                        "Generating structure in background"
                        not in st.session_state.statistics_text
                    ):
                        st.markdown(
                            st.session_state.statistics_text + "\n\n---\n"
                        )  # Format with line if showing statistics
                    else:
                        st.markdown(st.session_state.statistics_text)
                else:
                    placeholder.empty()

        if submitted:
            if len(topic_text) < 10:
                raise ValueError("Research paper topic must be at least 10 characters long")

            st.session_state.button_disabled = True
            st.session_state.statistics_text = "Generating research paper title and structure in background...."
            display_statistics()

            if not GROQ_API_KEY:
                st.session_state.groq = Groq(api_key=groq_input_key)

            large_model_generation_statistics, paper_structure = generate_paper_structure(
                topic_text,
                language
            )
            # Generate AI research paper title
            st.session_state.paper_title = generate_paper_title(topic_text, language)
            st.write(f"## {st.session_state.paper_title}")

            large_model_generation_statistics, paper_structure = generate_paper_structure(topic_text, language)

            total_generation_statistics = GenerationStatistics(
                model_name="mixtral-8x7b-32768"
            )

            try:
                paper_structure_json = json.loads(paper_structure)
                paper = ResearchPaper(st.session_state.paper_title, paper_structure_json)
                
                if 'paper' not in st.session_state:
                    st.session_state.paper = paper

                # Print the paper structure to the terminal to show structure
                print(json.dumps(paper_structure_json, indent=2))

                st.session_state.paper.display_structure()
    
                def stream_section_content(sections):
                    for title, content in sections.items():
                        if isinstance(content, str):
                            if st.session_state.index and st.session_state.vectorizer:
                                # Retrieve passages related to the section
                                retrieved_passages = retrieve_passages(
                                    title + ": " + content,
                                    st.session_state.index,
                                    st.session_state.vectorizer,
                                    st.session_state.preprocessed_texts
                                )
                                context = "\n\n".join(retrieved_passages)
                                prompt_with_context = title + ": " + content + "\n\n" + context
                            else:
                                prompt_with_context = title + ": " + content
                            
                            # Split the prompt into smaller chunks
                            chunks = split_text(prompt_with_context)

                            for chunk in chunks:
                                content_stream = generate_section(
                                    chunk, additional_instructions, language
                                )
                                for content_chunk in content_stream:
                                    # Check if GenerationStatistics data is returned instead of str tokens
                                    if isinstance(content_chunk, GenerationStatistics):
                                        total_generation_statistics.add(content_chunk)

                                        st.session_state.statistics_text = str(
                                            total_generation_statistics
                                        )
                                        display_statistics()

                                    elif content_chunk:
                                        st.session_state.paper.update_content(title, content_chunk)
                        elif isinstance(content, dict):
                            stream_section_content(content)

                stream_section_content(paper_structure_json)

                # Append extracted texts with citations
                if st.session_state.extracted_texts:
                    citations = generate_research_citations(st.session_state.extracted_texts, language)
                    st.session_state.citations = citations
                    st.session_state.paper.update_content(
                        "References", "\n\n".join(st.session_state.citations)
                    )

            except json.JSONDecodeError:
                st.error("Failed to decode the research paper structure. Please try again.")

            enable()

except Exception as e:
    st.session_state.button_disabled = False
    st.error(e)

    if st.button("Clear"):
        st.rerun()