VibeVoice-1.5B / app.py
akhaliq's picture
akhaliq HF Staff
Update app.py
c8a2124 verified
raw
history blame
18.8 kB
"""
VibeVoice Simple Chat Interface - Streamlined Audio Generation Demo
"""
import argparse
import os
import tempfile
import time
import threading
import subprocess
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
from pathlib import Path
from typing import Iterator, Dict, Any
# Clone and setup VibeVoice if not already present
import subprocess
vibevoice_dir = Path('./VibeVoice')
if not vibevoice_dir.exists():
print("Cloning VibeVoice repository...")
subprocess.run(['git', 'clone', 'https://github.com/microsoft/VibeVoice.git'], check=True)
print("Installing VibeVoice...")
subprocess.run(['pip', 'install', '-e', './VibeVoice'], check=True)
print("Installing wheel (required for flash-attn)...")
subprocess.run(['pip', 'install', 'wheel'], check=True)
print("Installing flash-attn...")
try:
subprocess.run(['pip', 'install', 'flash-attn', '--no-build-isolation'], check=True)
except subprocess.CalledProcessError:
print("Warning: flash-attn installation failed. Continuing without it...")
# Add the VibeVoice directory to path
import sys
sys.path.insert(0, str(vibevoice_dir))
# Import VibeVoice modules
try:
# Try direct import first (if installed as package)
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer
except ImportError:
try:
# Try importing from the cloned directory
import importlib.util
# Load modules directly from the VibeVoice directory
def load_module(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
# Load each module
config_module = load_module(
"vibevoice_config",
vibevoice_dir / "modular" / "configuration_vibevoice.py"
)
VibeVoiceConfig = config_module.VibeVoiceConfig
model_module = load_module(
"vibevoice_model",
vibevoice_dir / "modular" / "modeling_vibevoice_inference.py"
)
VibeVoiceForConditionalGenerationInference = model_module.VibeVoiceForConditionalGenerationInference
processor_module = load_module(
"vibevoice_processor",
vibevoice_dir / "processor" / "vibevoice_processor.py"
)
VibeVoiceProcessor = processor_module.VibeVoiceProcessor
streamer_module = load_module(
"vibevoice_streamer",
vibevoice_dir / "modular" / "streamer.py"
)
AudioStreamer = streamer_module.AudioStreamer
except Exception as e:
raise ImportError(
f"VibeVoice module not found. Error: {e}\n"
"Please ensure VibeVoice is properly installed:\n"
"git clone https://github.com/microsoft/VibeVoice.git\n"
"cd VibeVoice/\n"
"pip install -e .\n"
)
from transformers.utils import logging
from transformers import set_seed
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VibeVoiceChat:
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
"""Initialize the VibeVoice chat model."""
self.model_path = model_path
self.device = device if torch.cuda.is_available() else "cpu"
self.inference_steps = inference_steps
self.is_generating = False
self.stop_generation = False
self.current_streamer = None
# Check GPU availability
if torch.cuda.is_available():
print(f"βœ“ GPU detected: {torch.cuda.get_device_name(0)}")
print(f" Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
else:
print("βœ— No GPU detected, using CPU (generation will be slower)")
self.load_model()
self.setup_voice_presets()
def load_model(self):
"""Load the VibeVoice model and processor."""
print(f"Loading model from {self.model_path}")
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
if torch.cuda.is_available():
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map='cuda',
attn_implementation="flash_attention_2",
)
else:
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.float32,
device_map='cpu',
)
self.model.eval()
# Configure noise scheduler
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
self.model.model.noise_scheduler.config,
algorithm_type='sde-dpmsolver++',
beta_schedule='squaredcos_cap_v2'
)
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
def setup_voice_presets(self):
"""Setup voice presets from the voices directory."""
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
self.available_voices = {}
return
self.available_voices = {}
audio_extensions = ('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')
for file in os.listdir(voices_dir):
if file.lower().endswith(audio_extensions):
name = os.path.splitext(file)[0]
self.available_voices[name] = os.path.join(voices_dir, file)
self.available_voices = dict(sorted(self.available_voices.items()))
print(f"Found {len(self.available_voices)} voice presets")
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
"""Read and preprocess audio file."""
try:
wav, sr = sf.read(audio_path)
if len(wav.shape) > 1:
wav = np.mean(wav, axis=1)
if sr != target_sr:
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
return wav
except Exception as e:
print(f"Error reading audio {audio_path}: {e}")
return np.array([])
def format_script(self, message: str, num_speakers: int = 2) -> str:
"""Format input message into a script with speaker assignments."""
lines = message.strip().split('\n')
formatted_lines = []
for i, line in enumerate(lines):
line = line.strip()
if not line:
continue
# Check if already formatted
if line.startswith('Speaker ') and ':' in line:
formatted_lines.append(line)
else:
# Auto-assign speakers in rotation
speaker_id = i % num_speakers
formatted_lines.append(f"Speaker {speaker_id}: {line}")
return '\n'.join(formatted_lines)
def generate_audio_stream(
self,
message: str,
history: list,
voice_1: str,
voice_2: str,
num_speakers: int,
cfg_scale: float
) -> Iterator[tuple]:
"""Generate audio stream from text input."""
try:
self.stop_generation = False
self.is_generating = True
# Validate inputs
if not message.strip():
yield None
return
# Format the script
formatted_script = self.format_script(message, num_speakers)
# Select voices based on number of speakers
selected_voices = [voice_1]
if num_speakers > 1 and voice_2:
selected_voices.append(voice_2)
# Load voice samples
voice_samples = []
for i in range(num_speakers):
# Use the appropriate voice for each speaker
if i < len(selected_voices):
voice_name = selected_voices[i]
else:
# Reuse the first voice if we don't have enough
voice_name = selected_voices[0] if selected_voices else None
if voice_name and voice_name in self.available_voices:
audio_data = self.read_audio(self.available_voices[voice_name])
if len(audio_data) > 0:
voice_samples.append(audio_data)
else:
# Add default audio if reading failed
voice_samples.append(np.zeros(24000))
else:
# Add default audio if no voice available
voice_samples.append(np.zeros(24000))
# Ensure we have exactly the right number of voice samples
voice_samples = voice_samples[:num_speakers]
# Process inputs
inputs = self.processor(
text=[formatted_script],
voice_samples=[voice_samples],
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
# Move to device
if self.device == "cuda":
inputs = {k: v.to(self.device) if torch.is_tensor(v) else v for k, v in inputs.items()}
# Create audio streamer
audio_streamer = AudioStreamer(
batch_size=1,
stop_signal=None,
timeout=None
)
self.current_streamer = audio_streamer
# Start generation in separate thread
generation_thread = threading.Thread(
target=self._generate_with_streamer,
args=(inputs, cfg_scale, audio_streamer)
)
generation_thread.start()
# Wait briefly for generation to start
time.sleep(1)
# Stream audio chunks
sample_rate = 24000
audio_stream = audio_streamer.get_stream(0)
for audio_chunk in audio_stream:
if self.stop_generation:
audio_streamer.end()
break
# Convert to numpy
if torch.is_tensor(audio_chunk):
if audio_chunk.dtype == torch.bfloat16:
audio_chunk = audio_chunk.float()
audio_np = audio_chunk.cpu().numpy().astype(np.float32)
else:
audio_np = np.array(audio_chunk, dtype=np.float32)
# Ensure 1D
if len(audio_np.shape) > 1:
audio_np = audio_np.squeeze()
# Convert to 16-bit
audio_16bit = self.convert_to_16_bit_wav(audio_np)
yield (sample_rate, audio_16bit)
# Wait for generation to complete
generation_thread.join(timeout=5.0)
self.current_streamer = None
self.is_generating = False
except Exception as e:
print(f"Error in generation: {e}")
import traceback
traceback.print_exc()
self.is_generating = False
self.current_streamer = None
yield None
def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
"""Helper method to run generation with streamer."""
try:
def check_stop():
return self.stop_generation
outputs = self.model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
generation_config={'do_sample': False},
audio_streamer=audio_streamer,
stop_check_fn=check_stop,
verbose=False,
refresh_negative=True,
)
except Exception as e:
print(f"Error in generation thread: {e}")
import traceback
traceback.print_exc()
audio_streamer.end()
def convert_to_16_bit_wav(self, data):
"""Convert audio data to 16-bit WAV format."""
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
data = np.array(data)
if np.max(np.abs(data)) > 1.0:
data = data / np.max(np.abs(data))
data = (data * 32767).astype(np.int16)
return data
def stop_audio_generation(self):
"""Stop the current audio generation."""
self.stop_generation = True
if self.current_streamer:
try:
self.current_streamer.end()
except:
pass
def create_chat_interface(chat_instance: VibeVoiceChat):
"""Create a simplified Gradio ChatInterface for VibeVoice."""
# Get available voices
voice_options = list(chat_instance.available_voices.keys()) if chat_instance.available_voices else ["None"]
default_voice_1 = voice_options[0] if len(voice_options) > 0 else "None"
default_voice_2 = voice_options[1] if len(voice_options) > 1 else voice_options[0]
# Define the chat function
def chat_fn(message: Dict[str, Any], history: list, voice_1: str, voice_2: str, num_speakers: int, cfg_scale: float):
"""Process chat message and generate audio response."""
# Extract text from message (handle both string and dict inputs)
if isinstance(message, dict):
text = message.get("text", "")
else:
text = message
if not text.strip():
return gr.Audio(value=None)
try:
# Generate audio stream
audio_generator = chat_instance.generate_audio_stream(
text, history, voice_1, voice_2, num_speakers, cfg_scale
)
# Get the first audio chunk for immediate response
audio_data = None
for audio_chunk in audio_generator:
if audio_chunk is not None:
audio_data = audio_chunk
break
# Return audio component
if audio_data:
return gr.Audio(value=audio_data, streaming=True, autoplay=True)
else:
return gr.Audio(value=None)
except Exception as e:
print(f"Error in chat_fn: {e}")
import traceback
traceback.print_exc()
return gr.Audio(value=None)
# Create additional inputs
additional_inputs = [
gr.Dropdown(
choices=voice_options,
value=default_voice_1,
label="Voice 1",
info="Select voice for Speaker 0"
),
gr.Dropdown(
choices=voice_options,
value=default_voice_2,
label="Voice 2",
info="Select voice for Speaker 1 (if using multiple speakers)"
),
gr.Slider(
minimum=1,
maximum=2,
value=2,
step=1,
label="Number of Speakers",
info="Number of speakers in the dialogue"
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.3,
step=0.05,
label="CFG Scale",
info="Guidance strength (higher = more adherence to text)"
)
]
# Create the ChatInterface without examples to avoid the error
interface = gr.ChatInterface(
fn=chat_fn,
type="messages",
title="πŸŽ™οΈ VibeVoice Chat",
description="Generate natural dialogue audio with AI voices. Type your message or paste a script!",
additional_inputs=additional_inputs,
additional_inputs_accordion=gr.Accordion(label="Voice & Generation Settings", open=True),
submit_btn="🎡 Generate Audio",
stop_btn="⏹️ Stop",
autofocus=True,
autoscroll=True,
show_progress="minimal",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple"
),
css="""
.gradio-container {
max-width: 1200px;
margin: auto;
}
.message {
font-size: 1.1em;
}
""",
analytics_enabled=True,
fill_height=True,
fill_width=False,
)
return interface
def parse_args():
parser = argparse.ArgumentParser(description="VibeVoice Chat Interface")
parser.add_argument(
"--model_path",
type=str,
default="microsoft/VibeVoice-1.5B",
help="Path to the VibeVoice model",
)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
help="Device for inference",
)
parser.add_argument(
"--inference_steps",
type=int,
default=10,
help="Number of DDPM inference steps",
)
return parser.parse_args()
def main():
"""Main function to run the chat interface."""
args = parse_args()
set_seed(42)
print("πŸŽ™οΈ Initializing VibeVoice Chat Interface...")
# Initialize chat instance
chat_instance = VibeVoiceChat(
model_path=args.model_path,
device=args.device,
inference_steps=args.inference_steps
)
# Create interface
interface = create_chat_interface(chat_instance)
print(f"πŸš€ Launching chat interface")
print(f"πŸ“ Model: {args.model_path}")
print(f"πŸ’» Device: {chat_instance.device}")
print(f"🎭 Available voices: {len(chat_instance.available_voices)}")
# Launch the interface
interface.launch(
show_error=True,
quiet=False,
)
if __name__ == "__main__":
main()