File size: 18,779 Bytes
f716063
 
 
 
 
 
 
 
 
f8c5d67
f716063
 
 
 
 
 
 
 
f8c5d67
 
 
 
 
 
 
 
 
52ed211
 
cec99f3
52ed211
 
 
 
f8c5d67
 
 
 
 
d751314
f716063
d751314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f716063
 
 
 
 
 
 
 
 
 
 
ad908e5
f716063
 
 
 
 
ad908e5
 
 
 
 
 
 
f716063
 
 
 
 
 
 
 
 
ad908e5
 
 
 
 
 
 
 
 
 
 
 
 
 
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ddf4d8
 
 
 
 
 
 
 
 
f716063
 
 
9ddf4d8
 
 
 
 
 
f716063
9ddf4d8
 
f716063
 
 
 
9ddf4d8
f716063
 
 
 
 
ad908e5
 
 
 
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad908e5
 
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad908e5
 
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ddf4d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad908e5
 
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad908e5
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a2124
 
 
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a2124
f716063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a2124
f716063
ad908e5
f716063
 
 
c8a2124
 
 
 
f716063
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
"""
VibeVoice Simple Chat Interface - Streamlined Audio Generation Demo
"""

import argparse
import os
import tempfile
import time
import threading
import subprocess
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
from pathlib import Path
from typing import Iterator, Dict, Any

# Clone and setup VibeVoice if not already present
import subprocess

vibevoice_dir = Path('./VibeVoice')
if not vibevoice_dir.exists():
    print("Cloning VibeVoice repository...")
    subprocess.run(['git', 'clone', 'https://github.com/microsoft/VibeVoice.git'], check=True)
    print("Installing VibeVoice...")
    subprocess.run(['pip', 'install', '-e', './VibeVoice'], check=True)
    print("Installing wheel (required for flash-attn)...")
    subprocess.run(['pip', 'install', 'wheel'], check=True)
    print("Installing flash-attn...")
    try:
        subprocess.run(['pip', 'install', 'flash-attn', '--no-build-isolation'], check=True)
    except subprocess.CalledProcessError:
        print("Warning: flash-attn installation failed. Continuing without it...")

# Add the VibeVoice directory to path
import sys
sys.path.insert(0, str(vibevoice_dir))

# Import VibeVoice modules
try:
    # Try direct import first (if installed as package)
    from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
    from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
    from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
    from vibevoice.modular.streamer import AudioStreamer
except ImportError:
    try:
        # Try importing from the cloned directory
        import importlib.util
        
        # Load modules directly from the VibeVoice directory
        def load_module(module_name, file_path):
            spec = importlib.util.spec_from_file_location(module_name, file_path)
            module = importlib.util.module_from_spec(spec)
            sys.modules[module_name] = module
            spec.loader.exec_module(module)
            return module
        
        # Load each module
        config_module = load_module(
            "vibevoice_config",
            vibevoice_dir / "modular" / "configuration_vibevoice.py"
        )
        VibeVoiceConfig = config_module.VibeVoiceConfig
        
        model_module = load_module(
            "vibevoice_model",
            vibevoice_dir / "modular" / "modeling_vibevoice_inference.py"
        )
        VibeVoiceForConditionalGenerationInference = model_module.VibeVoiceForConditionalGenerationInference
        
        processor_module = load_module(
            "vibevoice_processor",
            vibevoice_dir / "processor" / "vibevoice_processor.py"
        )
        VibeVoiceProcessor = processor_module.VibeVoiceProcessor
        
        streamer_module = load_module(
            "vibevoice_streamer",
            vibevoice_dir / "modular" / "streamer.py"
        )
        AudioStreamer = streamer_module.AudioStreamer
        
    except Exception as e:
        raise ImportError(
            f"VibeVoice module not found. Error: {e}\n"
            "Please ensure VibeVoice is properly installed:\n"
            "git clone https://github.com/microsoft/VibeVoice.git\n"
            "cd VibeVoice/\n"
            "pip install -e .\n"
        )
from transformers.utils import logging
from transformers import set_seed

logging.set_verbosity_info()
logger = logging.get_logger(__name__)


class VibeVoiceChat:
    def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
        """Initialize the VibeVoice chat model."""
        self.model_path = model_path
        self.device = device if torch.cuda.is_available() else "cpu"
        self.inference_steps = inference_steps
        self.is_generating = False
        self.stop_generation = False
        self.current_streamer = None
        
        # Check GPU availability
        if torch.cuda.is_available():
            print(f"βœ“ GPU detected: {torch.cuda.get_device_name(0)}")
            print(f"  Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
        else:
            print("βœ— No GPU detected, using CPU (generation will be slower)")
        
        self.load_model()
        self.setup_voice_presets()
        
    def load_model(self):
        """Load the VibeVoice model and processor."""
        print(f"Loading model from {self.model_path}")
        
        self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
        
        if torch.cuda.is_available():
            self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
                self.model_path,
                torch_dtype=torch.bfloat16,
                device_map='cuda',
                attn_implementation="flash_attention_2",
            )
        else:
            self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
                self.model_path,
                torch_dtype=torch.float32,
                device_map='cpu',
            )
        
        self.model.eval()
        
        # Configure noise scheduler
        self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
            self.model.model.noise_scheduler.config, 
            algorithm_type='sde-dpmsolver++',
            beta_schedule='squaredcos_cap_v2'
        )
        self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
    
    def setup_voice_presets(self):
        """Setup voice presets from the voices directory."""
        voices_dir = os.path.join(os.path.dirname(__file__), "voices")
        
        if not os.path.exists(voices_dir):
            print(f"Warning: Voices directory not found at {voices_dir}")
            self.available_voices = {}
            return
        
        self.available_voices = {}
        audio_extensions = ('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')
        
        for file in os.listdir(voices_dir):
            if file.lower().endswith(audio_extensions):
                name = os.path.splitext(file)[0]
                self.available_voices[name] = os.path.join(voices_dir, file)
        
        self.available_voices = dict(sorted(self.available_voices.items()))
        print(f"Found {len(self.available_voices)} voice presets")
    
    def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
        """Read and preprocess audio file."""
        try:
            wav, sr = sf.read(audio_path)
            if len(wav.shape) > 1:
                wav = np.mean(wav, axis=1)
            if sr != target_sr:
                wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
            return wav
        except Exception as e:
            print(f"Error reading audio {audio_path}: {e}")
            return np.array([])
    
    def format_script(self, message: str, num_speakers: int = 2) -> str:
        """Format input message into a script with speaker assignments."""
        lines = message.strip().split('\n')
        formatted_lines = []
        
        for i, line in enumerate(lines):
            line = line.strip()
            if not line:
                continue
            
            # Check if already formatted
            if line.startswith('Speaker ') and ':' in line:
                formatted_lines.append(line)
            else:
                # Auto-assign speakers in rotation
                speaker_id = i % num_speakers
                formatted_lines.append(f"Speaker {speaker_id}: {line}")
        
        return '\n'.join(formatted_lines)
    
    def generate_audio_stream(
        self, 
        message: str, 
        history: list,
        voice_1: str,
        voice_2: str,
        num_speakers: int,
        cfg_scale: float
    ) -> Iterator[tuple]:
        """Generate audio stream from text input."""
        try:
            self.stop_generation = False
            self.is_generating = True
            
            # Validate inputs
            if not message.strip():
                yield None
                return
            
            # Format the script
            formatted_script = self.format_script(message, num_speakers)
            
            # Select voices based on number of speakers
            selected_voices = [voice_1]
            if num_speakers > 1 and voice_2:
                selected_voices.append(voice_2)
            
            # Load voice samples
            voice_samples = []
            for i in range(num_speakers):
                # Use the appropriate voice for each speaker
                if i < len(selected_voices):
                    voice_name = selected_voices[i]
                else:
                    # Reuse the first voice if we don't have enough
                    voice_name = selected_voices[0] if selected_voices else None
                
                if voice_name and voice_name in self.available_voices:
                    audio_data = self.read_audio(self.available_voices[voice_name])
                    if len(audio_data) > 0:
                        voice_samples.append(audio_data)
                    else:
                        # Add default audio if reading failed
                        voice_samples.append(np.zeros(24000))
                else:
                    # Add default audio if no voice available
                    voice_samples.append(np.zeros(24000))
            
            # Ensure we have exactly the right number of voice samples
            voice_samples = voice_samples[:num_speakers]
            
            # Process inputs
            inputs = self.processor(
                text=[formatted_script],
                voice_samples=[voice_samples],
                padding=True,
                return_tensors="pt",
                return_attention_mask=True,
            )
            
            # Move to device
            if self.device == "cuda":
                inputs = {k: v.to(self.device) if torch.is_tensor(v) else v for k, v in inputs.items()}
            
            # Create audio streamer
            audio_streamer = AudioStreamer(
                batch_size=1,
                stop_signal=None,
                timeout=None
            )
            
            self.current_streamer = audio_streamer
            
            # Start generation in separate thread
            generation_thread = threading.Thread(
                target=self._generate_with_streamer,
                args=(inputs, cfg_scale, audio_streamer)
            )
            generation_thread.start()
            
            # Wait briefly for generation to start
            time.sleep(1)
            
            # Stream audio chunks
            sample_rate = 24000
            audio_stream = audio_streamer.get_stream(0)
            
            for audio_chunk in audio_stream:
                if self.stop_generation:
                    audio_streamer.end()
                    break
                
                # Convert to numpy
                if torch.is_tensor(audio_chunk):
                    if audio_chunk.dtype == torch.bfloat16:
                        audio_chunk = audio_chunk.float()
                    audio_np = audio_chunk.cpu().numpy().astype(np.float32)
                else:
                    audio_np = np.array(audio_chunk, dtype=np.float32)
                
                # Ensure 1D
                if len(audio_np.shape) > 1:
                    audio_np = audio_np.squeeze()
                
                # Convert to 16-bit
                audio_16bit = self.convert_to_16_bit_wav(audio_np)
                
                yield (sample_rate, audio_16bit)
            
            # Wait for generation to complete
            generation_thread.join(timeout=5.0)
            
            self.current_streamer = None
            self.is_generating = False
            
        except Exception as e:
            print(f"Error in generation: {e}")
            import traceback
            traceback.print_exc()
            self.is_generating = False
            self.current_streamer = None
            yield None
    
    def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
        """Helper method to run generation with streamer."""
        try:
            def check_stop():
                return self.stop_generation
            
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=None,
                cfg_scale=cfg_scale,
                tokenizer=self.processor.tokenizer,
                generation_config={'do_sample': False},
                audio_streamer=audio_streamer,
                stop_check_fn=check_stop,
                verbose=False,
                refresh_negative=True,
            )
        except Exception as e:
            print(f"Error in generation thread: {e}")
            import traceback
            traceback.print_exc()
            audio_streamer.end()
    
    def convert_to_16_bit_wav(self, data):
        """Convert audio data to 16-bit WAV format."""
        if torch.is_tensor(data):
            data = data.detach().cpu().numpy()
        
        data = np.array(data)
        
        if np.max(np.abs(data)) > 1.0:
            data = data / np.max(np.abs(data))
        
        data = (data * 32767).astype(np.int16)
        return data
    
    def stop_audio_generation(self):
        """Stop the current audio generation."""
        self.stop_generation = True
        if self.current_streamer:
            try:
                self.current_streamer.end()
            except:
                pass


def create_chat_interface(chat_instance: VibeVoiceChat):
    """Create a simplified Gradio ChatInterface for VibeVoice."""
    
    # Get available voices
    voice_options = list(chat_instance.available_voices.keys()) if chat_instance.available_voices else ["None"]
    default_voice_1 = voice_options[0] if len(voice_options) > 0 else "None"
    default_voice_2 = voice_options[1] if len(voice_options) > 1 else voice_options[0]
    
    # Define the chat function
    def chat_fn(message: Dict[str, Any], history: list, voice_1: str, voice_2: str, num_speakers: int, cfg_scale: float):
        """Process chat message and generate audio response."""
        # Extract text from message (handle both string and dict inputs)
        if isinstance(message, dict):
            text = message.get("text", "")
        else:
            text = message
        
        if not text.strip():
            return gr.Audio(value=None)
        
        try:
            # Generate audio stream
            audio_generator = chat_instance.generate_audio_stream(
                text, history, voice_1, voice_2, num_speakers, cfg_scale
            )
            
            # Get the first audio chunk for immediate response
            audio_data = None
            for audio_chunk in audio_generator:
                if audio_chunk is not None:
                    audio_data = audio_chunk
                    break
            
            # Return audio component
            if audio_data:
                return gr.Audio(value=audio_data, streaming=True, autoplay=True)
            else:
                return gr.Audio(value=None)
        except Exception as e:
            print(f"Error in chat_fn: {e}")
            import traceback
            traceback.print_exc()
            return gr.Audio(value=None)
    
    # Create additional inputs
    additional_inputs = [
        gr.Dropdown(
            choices=voice_options,
            value=default_voice_1,
            label="Voice 1",
            info="Select voice for Speaker 0"
        ),
        gr.Dropdown(
            choices=voice_options,
            value=default_voice_2,
            label="Voice 2",
            info="Select voice for Speaker 1 (if using multiple speakers)"
        ),
        gr.Slider(
            minimum=1,
            maximum=2,
            value=2,
            step=1,
            label="Number of Speakers",
            info="Number of speakers in the dialogue"
        ),
        gr.Slider(
            minimum=1.0,
            maximum=2.0,
            value=1.3,
            step=0.05,
            label="CFG Scale",
            info="Guidance strength (higher = more adherence to text)"
        )
    ]
    
    # Create the ChatInterface without examples to avoid the error
    interface = gr.ChatInterface(
        fn=chat_fn,
        type="messages",
        title="πŸŽ™οΈ VibeVoice Chat",
        description="Generate natural dialogue audio with AI voices. Type your message or paste a script!",
        additional_inputs=additional_inputs,
        additional_inputs_accordion=gr.Accordion(label="Voice & Generation Settings", open=True),
        submit_btn="🎡 Generate Audio",
        stop_btn="⏹️ Stop",
        autofocus=True,
        autoscroll=True,
        show_progress="minimal",
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple"
        ),
        css="""
        .gradio-container {
            max-width: 1200px;
            margin: auto;
        }
        .message {
            font-size: 1.1em;
        }
        """,
        analytics_enabled=True,
        fill_height=True,
        fill_width=False,
    )
    
    return interface


def parse_args():
    parser = argparse.ArgumentParser(description="VibeVoice Chat Interface")
    parser.add_argument(
        "--model_path",
        type=str,
        default="microsoft/VibeVoice-1.5B",
        help="Path to the VibeVoice model",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cuda" if torch.cuda.is_available() else "cpu",
        help="Device for inference",
    )
    parser.add_argument(
        "--inference_steps",
        type=int,
        default=10,
        help="Number of DDPM inference steps",
    )
    
    
    return parser.parse_args()


def main():
    """Main function to run the chat interface."""
    args = parse_args()
    
    set_seed(42)
    
    print("πŸŽ™οΈ Initializing VibeVoice Chat Interface...")
    
    # Initialize chat instance
    chat_instance = VibeVoiceChat(
        model_path=args.model_path,
        device=args.device,
        inference_steps=args.inference_steps
    )
    
    # Create interface
    interface = create_chat_interface(chat_instance)
    
    print(f"πŸš€ Launching chat interface")
    print(f"πŸ“ Model: {args.model_path}")
    print(f"πŸ’» Device: {chat_instance.device}")
    print(f"🎭 Available voices: {len(chat_instance.available_voices)}")
    
    # Launch the interface
    interface.launch(
        show_error=True,
        quiet=False,
    )


if __name__ == "__main__":
    main()