Gemma2-Test / app.py
adityagofi's picture
Upload 3 files
a2a7f0f verified
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = Flask(__name__)
# Load the model and tokenizer
MODEL_NAME = "adityagofi/Finetunning-Gemma-2-MedicalChatbot" # Replace with your model path
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
@app.route('/generate', methods=['POST'])
def generate():
try:
# Parse input data
data = request.get_json()
input_text = data.get("input_text", "")
max_length = data.get("max_length", 50)
# Generate text
inputs = tokenizer.encode(input_text, return_tensors="pt")
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id)
# Decode the generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return jsonify({"generated_text": generated_text})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)