from flask import Flask, request, jsonify from transformers import AutoTokenizer, AutoModelForCausalLM import torch app = Flask(__name__) # Load the model and tokenizer MODEL_NAME = "adityagofi/Finetunning-Gemma-2-MedicalChatbot" # Replace with your model path tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) @app.route('/generate', methods=['POST']) def generate(): try: # Parse input data data = request.get_json() input_text = data.get("input_text", "") max_length = data.get("max_length", 50) # Generate text inputs = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) # Decode the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"generated_text": generated_text}) except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)